Daytime MALT neutral winds and their relationship with lower E region layers over Arecibo

Eliana Nossa (1), Jonathan Krall (2), Joe Huba (3), Douglas Drob (4)

(1) NRC Research Fellow, Plasma Physics Division, NRL
(2) Plasma Physics Division, NRL
(3) Syntek Technologies
(4) Space Science Division, NRL

AGU Fall meeting
December 2021

Distribution A. Approved for Public Release: Distribution Unlimited
The formation of the lower layers (below 105km) has been a topic of controversy.

Krall et al., 2020 proposed that in the absence of the zonal wind, the meridional wind could form the lower layer.

Haldoupis and Shalimov 2021 argue that this is not possible because the contribution factor for the zonal wind is higher than for the meridional wind.
Unique set of data with descending layers and neutral winds

Arecibo – dual beam data
Neutral winds 95km -130 km

- Hysell et al., 2014 proposed a technique to estimate neutral winds using the dual beam capabilities at Arecibo.

- During two World Day campaigns in 2013 and 2014 this mode was performed, where layers, neutral winds, temperatures and other neutral fluid parameters can be observed in the MALT region from altitudes between 95 km to 130 km.

Figure from Nossa, 2016
Arecibo – dual beam data
Neutral winds 95km -130 km

- Neutral winds are the main explanation for the descending metallic layer formation.

- However, the short term variability of the layers can be explained using neutral fluid parameters, like Shear or the Richardson number. This set of data allow us to obtain these parameters.

- For some days, dominant meridional winds are observed in conjunction with the low altitude layers (★).
Layer formation mechanism (assuming magnetic field dipole)

For the northern hemisphere

a) Zonal (u) wind shear

b) Meridional (v) wind shear

Figure adapted from Haldoupis, 2011
Declination is negative for the Caribbean and the US East coast

Map taken from NOAA's webpage
A complete expression for the vertical ion drift is obtained, including Declination (D):

\[
\begin{align*}
\nu_z & = -\frac{\cos I}{B_o} E_\phi \\
& + r_o \frac{\alpha \cos I}{B_o} E_p \\
& + (\sin^2 I + r_o \alpha^2 \cos^2 I) \omega \\
& + r_o (\cos I \sin I \sin D - \alpha \cos I \cos D) u \\
& + r_o (\sin I \cos I \cos D + \alpha \cos I \sin D) v
\end{align*}
\]

with:

\[
r_o = (1 + \alpha^2)^{-1}, \quad r_1 = \alpha r_o, \quad r_2 = \alpha^2 r_o,
\]

where \(\alpha = \nu / \Omega \)

\(\nu \) is the ion-neutral collision frequency

\(\Omega \) is the ion gyro frequency

Neglecting the electric field contribution:

\[
V_z = f_w w + f_u u + f_v v
\]

where \(f_u, f_v \) are the horizontal wind contribution factors.

Assumptions:
- Neglect ion inertia
- Quasi neutrality
- Ignoring effects of gravity pressure gradients and electron-neutral collisions
Zonal and Meridional wind contributions

- Traditional methods (D=0) showed that the contribution factors don’t change the sign.

- However, when considering D<0 over Arecibo, the contribution factor ratio changes for lower altitudes ($h \lesssim 115\ km$).

 1. Meridional winds become more important.

 2. Meridional shear mechanism is reversed below 115 km.
1. Ratio of the wind factor contribution

1. Meridional winds become more important

- The ratio of the contribution factors of the winds show that for the traditional method ($D = 0^\circ$), the meridional winds had to be at least 50 times greater than the zonal winds to have an impact in the formation of the layers.

- However, when using $D = -12.5^\circ$, the ratio shows that the meridional winds have to be only 5 times greater than the zonal winds. Examples of those magnitudes are found in the data.
New layer formation mechanism for lower altitudes when $D < 0$

2. Meridional shear mechanism is reversed below 115 km.

- **Westward wind**
 - V_z (Zonal wind shear)
 - V_x (Eastward wind)

- **Southward wind**
 - V_z (Meridional wind shear)
 - V_x (Southward wind)

- **Northward wind**
 - V_z (Meridional wind shear)
 - V_x (Northward wind)

- **Ion layer**

- **Dipole mechanism**
 - $D = 0$
 - V_x (Northward wind)
 - V_z (Southward wind)

- **Negative declination** means that because $f_x < 0$ below 115 km over Arecibo, then the meridional wind should be reversed to form a layer at that altitude.
New layer formation mechanism for lower altitudes when $D < 0$

Zonal (u) and meridional (v) wind
New mechanism compared with Arecibo data

- Horizontal winds should be in the north-west quadrant of the hodograph for altitudes below 110km over Arecibo.

The arrows on the hodograph mark altitudes:
- red at 97km,
- black at 105km, 115km, and 125km
Conclusions

• The meridional winds could have an important role in the formation of the lower metallic layers (near 100km) over the Caribbean and the East of US. Neutral wind measurements show cases of layer formation near 100 km, associated with strong meridional winds and weak zonal winds.

• A corrected layer formation mechanism is obtained for lower altitudes (h<115 km) for Arecibo when a complete magnetic field model (D = -12.5 deg) is used. The meridional winds mechanism is reversed with respect to the original model (using D=0). In the plots it means blue over yellow or southward over northward winds.

• The ratio of the contribution factors of the horizontal wind component at altitudes near 100km shows that strong meridional winds could overcome the effect of zonal winds (ratio~5 when using a complete magnetic field model vs ratio ~50 using a dipole model).

• A combination of the horizontal winds is considered to explain some of the lower layers observed in the data, where north-westward winds are present.