Standardizing Access to Heliophysics Data - HAPI Specification
Updates and Some New Usages for Cloud and Model Data

Jon Vandegriff¹, Eric Winter², Alex Antunes¹, Brent Smith², Robert Weigel³, Jeremy Faden⁴, D Aaron Roberts⁵, Robert Candey⁶, Eric Grimes⁷, Scott Boardsen⁸, Bernard Harris⁹, and Todd King¹⁰

¹Johns Hopkins University Applied Physics Laboratory
²Applied Physics Laboratory Johns Hopkins
³George Mason University
⁴Self Employed
⁵NASA Goddard SFC
⁶NASA Goddard Space Flight Cntr
⁷Auburn University
⁸NASA GSFC
⁹NASA Goddard Space Flight Center
¹⁰UCLA/ESS

November 24, 2022

Abstract

The Heliophysics Application Programmer’s Interface (HAPI) is a standard mechanism for accessing time series data. Because of its adoption at multiple Heliophysics (HP) and Space Weather (SW) data centers, it is now a useful way to reach many different resources within the community. It is also a COSPAR standard. The use of HAPI so far has been as a standard layer on top of a traditional mission or instrument archive, where HAPI lives alongside an existing, custom web-based computer interface. We will give highlights of recent additions to the specification which is now at version 3.0, with 3.1 around the corner. We also will present explorations into two new ways in which HAPI can be utilized. 1) HAPI as a way to access output from model runs, which can generate large volumes of data at various time cadences and spatial distributions. 2) HAPI as an interface over cloud-based data resources. In the cloud, HAPI can connect large volumes of data to scientist-friendly front-end analysis capabilities, such as a JupyterHub or potentially a Pangeo-like environment. The evolution of HAPI and its uses is expected to keep enhancing interoperability among Heliophysics and Space Weather resources.
Standardizing Access to Heliophysics Data - HAPI Specification Updates and Some New Usages for Cloud and Model Data

Jon Vandegriff, Sandy Antunes, Eric Winter, Brent Smith, Robert Weigel, Jeremy Faden, Aaron Roberts, Robert Candey, Eric Grimes, Scott Boardsen, Bernard Harris, Todd King

ENTER NAMES OF AFFILIATED INSTITUTIONS

PRESENTED AT:

AGU FALL MEETING
New Orleans, LA & Online Everywhere
13–17 December 2021
WHAT IS HAPI

HAPI: a data access standard for time series data

The specification:

To see new features in 3.0, visit the link above or scroll to the bottom of this panel.

Try it now:

http://hapi-server.org/servers/ (http://hapi-server.org/servers/)

This lets you get and plot data from multiple HAPI servers, and for every example, see functioning code showing how to programmatically get data yourself.

Why HAPI?

Without HAPI, there is less interoperability for analysis tools.

Software needs 3 different interfaces to talk to 3 data centers.
With HAPI, data access is identical across data centers.

Software can use one interface to talk to all data centers.
A HAPI server offers simple end points that allow listing of available data and parameters, and then requests for streaming of data for an arbitrary time period. Endpoints:

- hapi/about
- hapi/capabilities
- hapi/catalog
- hapi/info
- hapi/data

HAPI 3.0 Changes

Non-backward compatible changes to the request interface in HAPI 3.0:

1. The URL parameter id was replaced with dataset.
2. time.min and time.max were replaced with start and stop, respectively.

These three changes were discussed in issue #77. HAPI 3.0 servers must accept both the old and these new parameter names, but the HAPI 2 specification requires an error response if the new URL parameter names are used. In a future
version, the deprecated older names will no longer be valid.

HAPI 3.0 Schema Changes

1. Ability to specify time-varying bins (see issue #83)
2. Ability to use JSON references in info response (see issue #82)
3. Ability to indicate a units schema (if one is being used for units strings) (see issue #81)
NEW USE CASE: ACCESS TO CLOUD DATA

HAPI can operate in a cloud-based environment.

This year, we are building a system for doing this with a large volume of Heliophysics data.

More details: code need to access S3 storage instead of regular file system data.

Most data formats are adding support for reading directly from S3 storage. For netCDF, it works!
Pseudo code to read netCDF from S3

(this is here to demonstrate that we've tried it)

```python
import s3netcdf

floc['bucket'] = 'INSERT BUCKET HERE'
floc['key'] = 'INSERT KEY HERE'
floc['secret'] = 'INSERT SECRET HERE'

# AWS S3 file search
filenames = s3netcdf.s3_search('2019204')  # yyyydo

... select one filename...

s3handle = s3netcdf.s3open(access)
# add of yyyydo to filestem
doy = fname[28:35]
dirname = floc['bucket'] + '/' + doy + '/'

# open xarray via S3 bucket
science_data = s3netcdf.s3data(s3handle, dirname+fname)
```
NEW USE CASE: ACCESS MODEL DATA

HAPI can serve as an interface over model data.

Raw model outputs are diverse and need to be transformed into regularized forms before they can be generically used.

Geophysics MHD Modeling: GAMERA

Earth's field lines (snapshot from one time step).

GAMERA output data is too big to download - we are creating HAPI-based analysis tools in the cloud:

SuperMAG

http://supermag.jhuapl.edu

See also: Data-Model comparison poster by Micheal Wiltberger:
Data from SuperMAG sensors:

http://supermag.jhuapl.edu/data/hapi

Data from the same set of SuperMAG sensors formatted in exactly the same way as the HAPI data for the measurements, but coming from a simulated magnetic field (such as the GAMERA model - see below)/

http://supermag.jhuapl.edu/model/hapi

Data-model comparison can be made much easier.

Note that these model output mechanisms for HAPI are still in development!
HAPI ADOPTERS AND PLANS

There are HAPI servers that data providers can use or adapt. See the list at http://hapi-server.org (http://hapi-server.org)

There is a verification mechanism to test any server -- very useful for server developers!

There are HAPI clients for analyzing HAPI-accessible data.

For programmatic access, clients in: Python, IDL, Matlab, R, Java

Analysis Applications: SPEDAS, pySPEDAS, Autoplot

Many institutions have or are adopting HAPI:
Community Coordinated Modeling Center (CCMC)
Coordinated Data Analysis Web (CDAWeb)

SuperMAG, GAMERA
in progress

Planetary Data System
(node for plasma, particles and fields). in progress

Physics Department
(Autoplot)
Automated Multi-Dataset Analysis (AMDA) at Plasma Physics Data Centre (CDPP)

European Space Astronomy Centre (ESAC). *in progress*

LASP Interactive Solar Irradiance Data Center (LISIRD)

Physics Department

ESA’s SWARM Mission *(VirES toolkit)*
DISCLOSURES

We thank NASA for supporting this work on the following grants:

Sustaining HAPI Through Promulgation and Development
NASA Grant 80NSSC22K0194

Enhancing Science Analysis with Cloud-Based Tools and Frameworks
NASA Grant 80NSSC22K0226

Creating Interoperable Data Views for Two Important Heliophysics Resources: SuperMAG and TIMED/GUVI
NASA Grant 80NSSC19K0874

Enhancing and Standardizing Python Readers for HAPI Data
NASA Grant 80NSSC20K0177

Enhancing Heliophysics Python Library Interoperability by Adapting Common Data Models
NASA Grant 80NSSC21K0304
AUTHOR INFORMATION

JHU/APL: Jon Vandegriff, Sandy Antunes, Eric Winter, Brent Smith

George Mason University: Robert Weigel

Cottage Systems, Inc.: Jeremy Faden

GSFC: Aaron Roberts, Robert Candey, Bernard Harris

UCLA: Eric Grimes, Todd King

UMBC / GSFC: Scott Boardsen
ABSTRACT

The Heliophysics Application Programmer's Interface (HAPI) is a standard mechanism for accessing time series data. Because of its adoption at multiple Heliophysics (HP) and Space Weather (SW) data centers, it is now a useful way to reach many different resources within the community. It is also a COSPAR standard. The use of HAPI so far has been as a standard layer on top of a traditional mission or instrument archive, where HAPI lives alongside an existing, custom web-based computer interface. We will give highlights of recent additions to the specification which is now at version 3.0, with 3.1 around the corner. We also will present explorations into two new ways in which HAPI can be utilized. 1) HAPI as a way to access output from model runs, which can generate large volumes of data at various time cadences and spatial distributions. 2) HAPI as an interface over cloud-based data resources. In the cloud, HAPI can connect large volumes of data to scientist-friendly front-end analysis capabilities, such as a JupyterHub or potentially a Pangeo-like environment. The evolution of HAPI and its uses is expected to keep enhancing interoperability among Heliophysics and Space Weather resources.
REFERENCES

HAPI - Heliophysics Application Programmer's Interface

http://hapi-server.org

https://github.com/hapi-server/

HAPI: An API Standard for Accessing Heliophysics Time Series Data
Robert Weigel, Jon Vandegriff, Jeremy Faden, Todd King, D Aaron Roberts, Bernard Harris, Robert Candey, Nand Lal, Scott Boardsen, Chris Lindholm, Doug Lindholm, Thomas Baltzer, Larry Brown, Eric Grimes, Baptiste Cecconi, Vincent Génot, Benjamin Renard, Arnaud Masson, Beatriz Martinez
JGR Space Physics, 18 November 2021, https://doi.org/10.1029/2021JA029534

SuperMAG - a collection of regularied, global magnetometer data at 1-minute and (newly) 1-second cadence

http://superMAG.jhuapl.edu

GAMERA Model - Grid Agnostic MHD for Extended Research Applications

https://cgs.jhuapl.edu/Models/gamera.php