Warming of the Barents and GIN Seas

James Carton1, leon Chafik2, and Michael Steele3

1University of Maryland
2University of Sweden
3University of Washington/APL

November 24, 2022

Abstract

MAJOR POINTS: 1) The Barents and GIN basins are warming rapidly and exhibiting strong interannual variability. 2) While interannual variability of heat content in the GIN Seas is controlled by Atlantic water transport, we show interannual variability of heat content in the Barents is controlled by surface flux (see also Schlichtholtz et al 2011). 3) Interannual variations in surface flux are the result of variations in wintertime latent heat loss resulting from intrusions of warm moist air from the south. 4) (not shown) these variations also control winter sea ice cover.
Warming of the Barents and GIN Seas

James A. Carton (Univ. MD), Leon Chafik (Univ. Sweden), and Michael Steele (Univ. Washington/APL)

MAJOR POINTS:
1) The Barents and GIN basins are warming rapidly and exhibiting strong interannual variability.
2) While interannual variability of heat content in the GIN Seas is controlled by Atlantic water transport, we show interannual variability of heat content in the Barents is controlled by surface flux (see also Schlichtholtz et al 2011).
3) Interannual variations in surface flux are the result of variations in wintertime latent heat loss resulting from intrusions of warm moist air from the south.
4) (not shown) these variations also control winter sea ice cover.

SODA3 REANALYSIS
Model
• MOM5/SIS1 1/4°×1/4°×50lev, 10m nearsurface, Arakawa-B grid, polar cap north of 60N
• 5 ice type active (dynamics and thermodynamics) SIS1 sea ice
Data
• Hydrography: WOD2018 (includes 1TP)
• SST: IIOE/IJC55 S/S, Pathfinder, ACPO
• Sea ice: Walsh et al, CRYOSAT, ICEBRIDGE, ICESAT, Submarine, DA
• Ocean: “Enhanced” GI, flux bias correction, 10-d assimilation cycle
• Sea ice: enthalpy-based
Forcing
• MIRO2, ERA-I, JRA55, JRA55-DO, DFS5.2, CORE1, CERA20C, ERAS

MODEL GRID AT HIGH LATITUDE
Every 10th grid line shown

BASIN DECOMPOSITION
Focus on changes in Greenland, Iceland, Norwegian and Barents basins beginning with the Barents.

SODA3 CLIMATOLOGY

PHC3.0 climatology temperature and salinity (left) 0-50m conditions, and (right) 200-250m resemble SODA3. One differences is that SODA3 shows more influence of Atlantic water (lower right) in the interior basin.

BIG TRENDS IN 0-100M TEMPERATURE 1980-2017

Temperature change in the upper 100m of the Barents Sea shows up in SODA3 ensemble members as well as EN4.1.1, ORASS and ECCO4. Trend: 0.38K/decade and seven warm events over 39 years.

BARENTS SEA HEAT CONTENT

By decomposing the net surface heat flux into radiative and turbulent components it is evident that the source of interannual fluctuations in Barents Sea heat is episodic reductions in latent heat loss in winter.

ANTICYCLONIC SLP PATTERN ASSOCIATED WITH INCREASES IN LATENT HEAT LOSS

Latent heat loss is associated with warm, moist air flows into the Barents. Sea region from the south.

DETRENDED BARENTS SEA HEAT BUDGET

However, a basin-average heat budget shows that much of the interannual variability can be explained by surface fluxes alone without invoking changes in ocean heat transport convergence. Surface flux is provided by the new ERAS reanalysis.

SODA3 and EN4.1.1 (included for comparison) show 0-100m temperatures in the Nordic (and Barents) Seas rising at a rate in excess of 0.3K/decade since 1980!

Annual average temperature and salinity anomalies with depth and time

At interannual timescales the temperature anomalies are coherent vertically leaving open the question of the importance of changes in net heating over the Barents region.

Final Questions
1) GIN Seas have their own interannual variability. Under what circumstances can transport across the BSO import that variability into the Barents?
2) What is the impact of the Barents Sea temperature variability on the central Arctic Ocean?

歹Reference