Characterization of wave-particle interactions in the flux pile-up region of asymmetric reconnection

Matthew Argall1, Kristoff Paulson1, Narges Ahmadi2, Hiroshi Matsui1, Trevor Leonard2, Drew Turner3, Roy Torbert4, Olivier Le Contel5, Christopher Russell6, Werner Magnes7, Robert Strangeway6, Barbara Giles8, Per-Arne Lindqvist9, Yuri Khotyaintsev10, and Robert Ergun2

1University of New Hampshire
2Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder
3The Aerospace Corporation
4Southwest Research Institute; University of New Hampshire
5Laboratoire de Physique des Plasmas
6University of California, Los Angeles
7Space Research Institute, Austrian Academy of Sciences
8NASA Goddard Space Flight Center
9KTH Royal Institute of Technology
10IRF Swedish Institute of Space Physics

November 24, 2022

Abstract

We investigate electron whistler wave activity in the flux pile-up region of an asymmetric reconnection event at the magnetopause. The \(~140\text{Hz}\) waves are right-hand polarized with a wave normal angle of \(~20\) degrees and track the magnetic field strength, consistent with electron whistler waves. Poynting flux direction indicates that the waves were generated at the reconnection site. The waves modulated the flux of 500eV electrons propagating parallel and anti-parallel to the magnetic field, as observed by EDI. Only two of four MMS spacecraft observe similar wave activity, suggesting that the waves are isolated within a narrow flux tube. While it is not possible to use the wave telescope technique, current density produced by 500eV electrons provides a means of estimating the parallel wave vector, \(k\), from a single spacecraft. In addition, we fit the FPI electron parallel energy distribution with a kappa function then use Liouville mapping with 500eV EDI electrons to determine the parallel wave potential, \(\phi\), and electric field, \(E\). Combining this with the wave normal angle and Poynting flux direction provides an estimate for the perpendicular components of \(k\) and \(E\).
Characterization of Wave-Particle Interactions in the Flux Pile-up Region of Asymmetric Reconnection

Matthew R. Argall\(^1\) (matthew.argall@unh.edu), K. Paulson\(^1\), N. Ahmadi\(^2\), H. Matsui\(^3\), T. Leonard\(^2\), D. Turner\(^3\), R.B. Torbert\(^4,5\), O. Le Contel\(^6\), C.T. Russell\(^6\), W. Magnes\(^7\), R. J. Strangeway\(^2\), P.-A. Lindqvist\(^9\), Yu. V. Khotyaintsev\(^10\), R.E. Ergun\(^2\),

\(^1\)University of New Hampshire, Durham, NH, USA; \(^2\)Laboratory of Atmospheric and Space Physics, Boulder, CO, USA; \(^3\)The Aerospace Corporation, El Segundo, California, USA; \(^4\)Southwest Research Institute, San Antonio, TX, USA; \(^5\)Laboratory of Plasma Physics, Paris, France; \(^6\)University of California, Los Angeles, Los Angeles, CA, USA; \(^7\)Space Research Institute, Graz, Austria; \(^8\)Goddard Space Flight Center, Greenbelt, MD, USA; \(^9\)Royal Institute of Technology, Stockholm, Sweden; \(^10\)Swedish Institute of Space Physics, Uppsala, Sweden

Wave Observations

Event Overview

- MMS4 crossed the magnetopause from the magnetosheath to the magnetosphere
 - B\(_L\) reverses from negative to positive
 - Density transitions from high to low
 - An electron-scale electron jet is embedded within the ion jet
 - Electron temperature anisotropy (T\(_{e,\text{perp}}\)/T\(_{e,\text{par}}\) > 1) occurs within the current layer

Wave Properties

- Anisotropy leads to wave growth
 - Electron whistler waves (f \sim f\(_{ce}\)/2)
 - Right-hand polarized
 - Wave-normal angle of \sim 20°
 - Poynting flux directed away from the X-line

Wave Generation

- Pitch-angle focusing toward 90° at mirror point in 40nT field
- Field line curvature scatters electrons
- Resonant energy dips into bulk energy of the plasma
- Combined result is whistler wave growth

Wave-Particle Interactions

Opening of Field Lines

- Magnetospheric plasma is visible in magnetosheath along newly reconnected flux tubes
 - Increase of 500eV, 0° electrons indicate cross to south
 - \sim 100keV electrons present with whistler waves on separatix

Power Spectrum

- Magnetic and electric fields show wave power from 100-400Hz
- EDI fluxes modulated from 70-200Hz
 - \sim 160° PA resonate strongest, in agreement with θ

Wave Electric Field

- Parallel-component of whistler waves modulates field-aligned electron fluxes
- Louiville mapping of 500eV fluxes provides wave potential and E_||
 - E_|| \sim 20 V
 - More careful examination needed

Conclusions

- Inflowing, field-aligned electrons are scattered towards 90° PA by increased field line curvature
- They are then accelerated in the out-of-plane direction by the reconnection electric field
- Upon ejection from the current layer, they re-magnetize and mirror within the exhaust
- Focusing toward 90° PA, among other factors, spurs whistler wave growth

References