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Abstract

This paper compares the characteristics of the monthly mean AIRS Version-6 and CERES EBAF Edition 4.0 OLR data sets

over a 14-year overlap period, September 2002 through August 2016. These comparisons include spatial plots of monthly mean

OLR climatologies and spatial plots of OLR Average Rates of Change (ARCs), representative of the slopes of the linear least

squares fits to anomaly time series. This paper also compares spatial plots of El Niño Correlations (ENCs) of the AIRS OLR

and CERES OLR anomaly time series. ENCs represent temporal correlations of anomaly time series with an El Niño Index

that we define in this paper. In addition, we show ARCs and ENCs of select derived AIRS geophysical parameters that help

explain OLR variability in space and time. There are separate AIRS data sets that use data observed only in ascending Aqua

orbits (AIRS) and data observed only in descending Aqua orbits (AIRS). An additional data set of AIRS products exists

based on observations made in both orbits (AIRS). There is excellent agreement between the ARCs of CERES OLR and the

ARCs of AIRS OLR down to the 1@ by 1@ longitude spatial scale. The AIRS OLR product displays a positive global mean

monthly mean bias compared to CERES OLR of roughly 3.0 W/m that is essentially constant in space and time. The largest

differences between AIRS OLR and CERES OLR monthly climatologies and anomaly time series occur in regions where the

diurnal differences of AIRS OLR are largest.
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Key Points 13 

 14 

This paper compares the temporal and spatial characteristics of the monthly mean 15 

AIRS Version-6 OLR and CERES EBAF_Edition 4.0 OLR data sets over the period 16 

2003 through 2016.  17 

AIRS OLR displays a positive global mean bias as compared to CERES OLR of 18 

approximately 3.0 W/m2 that is essentially constant in space and time. 19 

There is excellent agreement between the spatial distributions of monthly mean 20 

AIRS and CERES OLR climatologies, as well as of the trends of the AIRS and CERES 21 

OLR anomaly time series and their correlations with an El Niño Index. The largest 22 

AIRS/CERES OLR differences occur in places where diurnal differences of AIRS OLR 23 

are largest. 24 

This agreement also validates the AIRS retrieved geophysical parameters.  These 25 

geophysical parameters help explain the factors influencing OLR variability. 26 
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Abstract 31 

This paper compares the characteristics of the monthly mean AIRS Version-6 and 32 

CERES_EBAF Edition 4.0 OLR data sets over a 14-year overlap period, September 33 

2002 through August 2016. These comparisons include spatial plots of monthly 34 

mean OLR climatologies and spatial plots of OLR Average Rates of Change (ARCs), 35 

representative of the slopes of the linear least squares fits to anomaly time series. 36 

This paper also compares spatial plots of El Niño Correlations (ENCs) of the AIRS 37 

OLR and CERES OLR anomaly time series. ENCs represent temporal correlations of 38 

anomaly time series with an El Niño Index that we define in this paper.  In addition, 39 

we show ARCs and ENCs of select derived AIRS geophysical parameters that help 40 

explain OLR variability in space and time. 41 

AIRS flies on EOS Aqua. There are separate AIRS data sets that use data observed 42 

only in ascending Aqua orbits (AIRSPM) and data observed only in descending Aqua 43 

orbits (AIRSAM).  An additional data set of AIRS products exists based on 44 

observations made in both orbits (AIRSAVG).  There is excellent agreement between 45 

the ARCs of CERES OLR and the ARCs of AIRSAVG OLR down to the 1˚ latitude by 1˚ 46 

longitude spatial scale.   The AIRSAVG OLR product displays a positive global mean 47 

monthly mean bias compared to CERES OLR of roughly 3.0 W/m2 that is essentially 48 

constant in space and time.  The largest differences between AIRSAVG OLR and 49 

CERES OLR monthly climatologies and anomaly time series occur in regions where 50 

the diurnal differences of AIRS OLR are largest.  51 
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AIRS OLR and CERES OLR are independent products.  The agreement between the 52 

AIRS OLR and CERES OLR data sets therefore serves to validate both OLR data sets 53 

and indicates that neither data set contains spurious drifts. The agreement between 54 

the AIRS OLR and CERES OLR data sets also validates, to some extent, values and 55 

short-term trends of the AIRS retrieved geophysical parameters used in the 56 

computation of AIRS OLR.  The temporal and spatial variability of AIRS retrieved 57 

geophysical parameters help explain those of OLR. 58 

1.0 Introduction 59 

This paper compares monthly mean values of the AIRS Version-6 Outgoing 60 

Longwave Radiation (OLR) data set and the CERES_EBAF Edition 4.0 OLR data set 61 

over a 14-year overlap period, September 2002 through August 2016.  OLR, the 62 

residual between incoming solar radiation and the sum of outgoing longwave (LW) 63 

and reflected shortwave (SW) radiation, is an important component of the Earth’s 64 

energy imbalance. The Earth’s climate will warm or cool depending on the sign and 65 

magnitude of its energy imbalance.   66 

Chu and Wang (1997), Soden and Held (2006), Soden et al. (2008), Dessler et al. 67 

(2008),  Huang and Ramaswamy (2009), Chung et al. (2010),  Dessler (2010),  68 

Zelinka and Hartmann (2011),  Zelinka et al. (2012a), (2012b), and Vonder Haar et 69 

al. (2012) utilized the spatial and temporal variability of OLR in their studies of 70 

climate processes.  Kidson et al. (2002), Jones et al. (2004), Barlow et al. (2005), 71 

Kiladis et al. (2005), Hoyos and Webster (2007), Wong et al. (2006), Chiodi and 72 

Harrison (2010), Tian et al. (2010), Loeb et al. (2012), and Hartmann and Ceppi 73 



 

 

3 

(2013) all used OLR  variability  as a proxy for tropical convective activity to further 74 

their understanding of climate processes.  The new AIRS OLR and CERES OLR data 75 

sets described in this paper provide an improved depiction to scientists of the 76 

variability of OLR over the fourteen-year period under study. Other AIRS products 77 

help to explain this variability in terms of the variability surface and atmospheric 78 

parameters during this time-period. 79 

Susskind et al. (2012) compared values of the monthly mean AIRS Version-5 OLR 80 

data set, including anomaly time series over the period September 2002 through 81 

June 2011, with analogous results contained in the CERES Edition 2.6r OLR data set. 82 

Susskind et al. (2012) showed that while there were biases between the AIRS OLR 83 

and CERES OLR monthly mean data sets they used, the AIRS OLR and CERES OLR 84 

anomaly time series, including short-term trends over the period September 2002 85 

through June 2011, matched each other very closely on a 1°x1° spatial scale.  86 

Following the methodology of Susskind et al. (2012), this paper compares ARCs 87 

(Average Rates of Change) and ENCs (El Niño Correlations) of AIRS OLR anomaly 88 

time series with those of CERES OLR.  The ARC of an anomaly time series is the slope 89 

of the linear least squares fit to the anomaly time series over the time-period under 90 

study, and the ENC of an anomaly time series is its temporal correlation with an El 91 

Niño Index (ENI). Susskind et al. (2012) defined the ENI as the difference of the 92 

NOAA monthly mean oceanic Sea Surface Temperature (SST), averaged over the 93 

NOAA Niño-4 spatial region extending from 5°N to 5°S longitude and from 160°E 94 

eastward to 150°W, from an eight year climatology which Susskind et al. (2012) 95 
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generated.  This paper redefines the ENI with regard to both the spatial and time 96 

domains. We now define the ENI to include the average NOAA SST anomalies over 97 

the combined Niño-4 and Niño-3 spatial regions, again extending from 5°N to 5°S 98 

latitude and now extending from 160°E longitude further eastward to 90°W 99 

longitude. We further extended the spatial domain of the ENI in this paper because 100 

the center of El Niño/La Niña activity shifted eastward into the Niño-3 spatial 101 

domain over the latter part of the fourteen-year time-period under study.  We now 102 

define monthly mean values of the ENI, as well as anomalies of all geophysical 103 

parameters, as monthly mean differences from their fourteen-year climatologies.   104 

 This paper differs from in Susskind et al. (2012) in two very important ways 105 

regarding the data sets used.  AIRS flies on EOS Aqua and takes observations in 106 

ascending orbits nominally at 1:30 PM local time and in descending orbits nominally 107 

at 1:30 AM local time. Separate AIRSPM and AIRSAM data sets exist based on 108 

observations made only in those orbits. Susskind et al. (2012) only examined 109 

characteristics of an AIRS OLR data set derived using observations taken on both 110 

sets of orbits. In this paper, we examine characteristics of AIRSPM and AIRSAM data 111 

sets separately, as well as characteristics of a data set derived using observations 112 

taken on both sets of orbits, AIRSAVG, as done by Susskind et al. (2012).  In addition, 113 

we now use the improved AIRS and CERES OLR data sets, AIRS/AMSU Version-6 and 114 

CERES_EBAF (Energy Balanced and Filled) Edition 4.0.   115 

The methodology used to produce CERES_EBAF Edition 4.0 OLR involves combining 116 

CERES observations on the Terra and Aqua satellites with imager observations from 117 
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Geostationary (GEO) satellites in order to account for hourly Top_of_Atmosphere 118 

(TOA) flux variations throughout the day in every region over an entire month 119 

(Doelling et al., 2013; Loeb et. al., 2018). The AIRS Version-6 OLR product uses 120 

observations taken only in the Aqua orbit. Consequently, even with perfect AIRS and 121 

CERES OLR data products, one would still expect differences between the AIRSAVG 122 

OLR data set and the CERES OLR data set resulting from differences in temporal 123 

sampling. This is especially true over land in locations in which Aqua does not 124 

sample during times of maxima and minima of either land surface skin temperature 125 

or of convection. The AIRSPM OLR and AIRSAM OLR data sets show areas, especially 126 

over ocean, in which day/night OLR differences are very small. Direct comparisons 127 

of the AIRSAVG OLR with CERES OLR data sets are therefore most meaningful in 128 

those regions. 129 

2.0 The AIRS Version-6 OLR and CERES_EBAF Edition 4.0 OLR Data Sets 130 

2.1 AIRS Version 6-OLR 131 

AIRS is a high spectral resolution infrared (IR) atmospheric sounder flying on the 132 

Earth Observing System (EOS) Aqua satellite, alongside CERES and the microwave 133 

(MW) sounders AMSU A1/A2.  AIRS/AMSU Version 6 uses both AIRS and AMSU 134 

radiances in the generation of products. The AIRS/AMSU Version-6 data set, 135 

henceforth referred to as AIRS Version 6, began in September 2002 and extends 136 

through August 2016, after which AMSU A2 ceased to function.  AIRS Version-6 137 

generates Level-2 values of AIRS OLR for each AIRS Field of View (FOV) as a 138 

function of the AIRS retrieved geophysical state in that FOV via use of an OLR 139 
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Radiative Transfer Algorithm (RTA). AIRS/AMSU Version-6 uses no information 140 

other than the AIRS/AMSU radiances in the generation of AIRS retrieved products 141 

and OLR, with the exception of a 6 hour forecasted surface pressure, used in the 142 

calculations of expected channel radiances as a function of geophysical parameters, 143 

as well as in the calculation of AIRS OLR for a geophysical state.   144 

The AIRS Version-6 OLR product has improved considerably compared to that of 145 

AIRS Version-5 for two major reasons. The first is that the AIRS Version-6 retrieved 146 

geophysical states (Susskind et al., 2014) are more accurate than the AIRS Version-5 147 

geophysical states (Susskind et al., 2011). In addition, the AIRS Version-6 OLR RTA 148 

(Iacono et al., 2008) is considerably more accurate than the OLR RTA (Mehta and 149 

Susskind 1999a, Mehta and Susskind 1999b) used in Version-5.   150 

We describe the methodology used to compute AIRS OLR in detail in Appendix A. 151 

Appendix A shows that values of AIRS OLR in a FOV are linear combinations of 152 

OLRCLR, the value of OLR computed for the clear portion of the FOV, and OLRCLD, the 153 

OLR computed for different cloudy portions of the FOV.  OLRCLR increases with 154 

increases in the earth’s skin surface temperature Ts, with increases in the earth’s 155 

surface skin spectral emissivity , and with increases in the atmospheric 156 

temperature profile T(p).  On the other hand, OLRCLR generally decreases with 157 

increases in the atmospheric water vapor profile q(p), especially in the mid-upper 158 

troposphere.  Values of OLRCLR also depend on the vertical distributions of trace 159 

gases such as O3, CH4, CO2, and CO. OLRCLD depends on these same geophysical 160 

parameters, and also strongly depends on the heights, amounts, and spectral 161 
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emissivities of multiple layers of cloud cover as seen from above in the FOV, 162 

especially those of high clouds. Appendix A explains why AIRS Version-6 determines 163 

only the product of the fractional cloudiness  as seen from above in different FOVs, 164 

and   the cloud emissivity.  We call this product   the “Radiative Effective Cloud 165 

Fraction”. 166 

AIRS Version-6 generates single FOV Level-2 (L2) values of OLR under all cloud 167 

conditions in which the cloud parameter retrieval in that FOV has converged. This 168 

convergence occurs close to 100% of the time.  All generated L2 values of AIRS OLR 169 

are included in the AIRS gridded Level-3 (L3) OLR product.  170 

The methodology used to compute AIRS OLR involves a sum of separate calculations 171 

performed in each of 16 spectral bands. Table A1 in the Appendix shows that almost 172 

half of OLR originates from bands with frequencies lower than 650 cm-1, the lowest 173 

frequency observed by AIRS.  Table A1 also shows that LW flux at these lower 174 

frequencies is relatively insensitive to cloud characteristics because, on the average, 175 

the presence of clouds decreases OLR by a total of only 4.8 W/m2 over those 176 

frequencies not observed by AIRS.  We obtained the AIRS Version-6 data set from 177 

the Goddard Earth Sciences (GES) Data and Information Services Center (DISC) 178 

doi:10.5067/Aqua/AIRS/DATA319. 179 

 180 

2.2 CERES_EBAF Edition 4.0 OLR 181 

https://doi.org/10.5067/Aqua/AIRS/DATA319
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The CERES_EBAF Edition 4.0 data set began in March 2000 and, at the time of this 182 

writing, extends through November 2019. CERES instruments fly on EOS Terra in a 183 

sun-synchronous orbit with a descending mode equator crossing time of 10:30 AM 184 

local time, as well as on EOS Aqua, alongside AIRS, in a sun-synchronous orbit with 185 

an ascending mode equator crossing time of 1:30 PM local time. Each CERES 186 

instrument measures filtered radiances in three distinct bands: the shortwave band 187 

(SW), with wavelengths between 0.3 and 5 μm; the total band (TOT), with 188 

wavelengths between 0.3 and 200 μm; and the window band (WN), with 189 

wavelengths between 8 and 12 μm.  Unfiltered SW, LW, and WN radiances are 190 

determined following Loeb et al. (2001). CERES LW radiances are determined by 191 

subtracting the CERES SW band radiances from the CERES TOT radiances.  The 192 

CERES-EBAF Edition 4.0 OLR product utilizes the CERES SYN 1deg Ed-4.0 LW data 193 

product that combines observations from CERES instruments on each of the Terra 194 

and Aqua satellites with geostationary imager measurements (Doelling et al., 2013) 195 

in order to provide TOA fluxes hourly in 1°x1° latitude-longitude regions.    196 

The CERES_EBAF Edition 4.0 data set utilizes an objective constrainment algorithm 197 

described in Loeb et al. (2018).  This approach makes a one-time adjustment to SW 198 

and LW TOA fluxes, within their ranges of uncertainty, to remove inconsistencies 199 

between the 10-year (July 2005-June 2015) average CERES all-sky global net TOA 200 

flux and heat storage in the Earth-atmosphere system based on findings using in-201 

situ data. We obtained the CERES EBAF_Edition 4.0 OLR data set from 202 

https://ceres.larc.nasa.gov/products-info.php?product=EBAF. 203 

https://ceres.larc.nasa.gov/products-info.php?product=EBAF
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3.0 Inter-comparison of AIRS and CERES OLR Data Records  204 

This section compares monthly mean values of fourteen years of the three AIRS 205 

Version 6 OLR data sets and the CERES_EBAF Edition 4.0 OLR data set with each 206 

other on a number of different spatial domains: global; the Northern Hemisphere 207 

extra-tropics (NHET) 90°N-30°N; the tropics 30°N-30°S; and the Southern 208 

Hemisphere extra-tropics (SHET) 30°S-90°S. The tropics represent 50% of the area 209 

of the earth, and the NHET and SHET each represent 25% of the earth’s area.   210 

Figures 1a-1d show Version-6 monthly mean values, starting from the beginning of 211 

the AIRS data set September 2002, of AIRSPM OLR, AIRSAM OLR, AIRSAVG OLR, and 212 

CERES_EBAF Edition 4.0 OLR in four spatial domains. The vertical black lines mark 213 

results for each January, and the numbers indicate the calendar year between each 214 

January. Figure 1a shows results for global mean values of OLR. All global mean OLR 215 

data sets contain a large seasonal cycle as well as a pronounced diurnal signal. AIRS 216 

global mean OLR is greater at roughly 1:30 PM local time (pink) than it is at roughly 217 

1:30 AM (red).  This is because, everything else being equal, OLR increases with 218 

increasing surface and atmospheric temperatures, both of which tend to be largest 219 

in the afternoon.  In the global mean sense, AIRSAM OLR matches CERES OLR almost 220 

perfectly, while AIRSPM OLR is larger than CERES OLR. We later show this finding to 221 

be the result of cancellation of positive and negative differences between AIRSAM 222 

OLR and CERES OLR in different spatial domains. AIRSAVG OLR values (blue) lie 223 

between those of AIRSAM and those of AIRSPM. 224 
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Figures 1b-d show analogous results for tropical mean OLR, NHET mean OLR, and 225 

SHET mean OLR respectively. AIRS and CERES tropical mean OLR time series show 226 

similar relative differences compared to those of global mean OLR. AIRSAM tropical 227 

mean OLR again matches that of CERES almost perfectly, and AIRSPM tropical mean 228 

OLR is larger than CERES tropical mean OLR. Tropical mean OLR has a seasonal 229 

variability, with minima in January and maxima in July, but with a significantly 230 

smaller and more complex seasonal cycle than that of global mean OLR. NHET and 231 

SHET area mean OLR time series each show pronounced out of phase seasonal 232 

cycles having maxima in local summer and minima in local winter. The NHET OLR 233 

seasonal cycle is larger than that of the SHET.  Consequently, the global mean OLR 234 

seasonal cycle is in phase with, but smaller than, that of NHET.  235 

The time of day dependences of the NHET and SHET AIRS OLR time series are more 236 

complex than those of either global mean OLR or tropical mean OLR, as are the 237 

relationships between AIRS OLR and CERES OLR.   The amplitudes of OLR diurnal 238 

differences are considerably larger in the NHET, which is predominantly land, than 239 

they are in the SHET, which is predominantly ocean. This phenomenon occurs 240 

because oceanic surface skin temperatures have both smaller seasonal cycles and 241 

smaller diurnal cycles than those for land.  242 

Figures 2a-d present the differences (AIRS minus CERES) between the AIRS and 243 

CERES monthly mean area mean OLR values shown in Figures 1a-d. Global mean 244 

values of AIRSAM OLR match those of CERES OLR extremely closely in every month of 245 

the time-period under study. Global mean values of AIRSPM OLR exceed those of 246 
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CERES OLR by about 7W/m2.  This bias has a small seasonal cycle, with minima in 247 

Northern Hemisphere winter.  The tropics contain similar, but somewhat larger, 248 

differences between the time of day dependent AIRS OLR data sets and the CERES 249 

OLR data set.  250 

Levels of agreement between monthly mean values of AIRS OLR and CERES OLR 251 

show different characteristics in the extra-tropics however. Figure 2c shows a 252 

roughly out of phase NHET relationship of the seasonal cycle differences between 253 

AIRSPM OLR and CERES OLR on the one hand (pink), and between AIRSAM OLR and 254 

CERES OLR on the other hand (red).  NHET AIRSAM area mean values of OLR match 255 

those of CERES OLR almost perfectly during local winter, but are slightly negative 256 

compared to CERES OLR during local spring/summer when the positive biases 257 

between AIRSPM OLR and CERES OLR are largest.  In the SHET, AIRSAM OLR matches 258 

CERES OLR almost perfectly in local spring/summer, but is larger than CERES OLR 259 

during local fall/winter. A consequence of the hemispheric asymmetries in the 260 

AIRSAM and AIRSPM OLR differences from CERES OLR is that the AIRSAVG OLR time 261 

series has only very small seasonal cycle differences from that of CERES OLR in each 262 

extra-tropical region.  263 

Table 1 shows the biases between monthly mean values of AIRS OLR and CERES 264 

OLR for each spatial domain, as well as their temporal standard deviations (STDs). 265 

Table 1 also includes the slopes of the linear least squares fits to the differences 266 

between AIRS OLR and CERES OLR (W/m2/yr), along with their uncertainties, 267 

which represent twice the STDs of the linear least squares fits to the time series. The 268 
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biases between area-mean values of AIRSAM OLR and CERES OLR are smallest in all 269 

spatial regions. Area mean biases do not tell the whole story, however.  The 270 

temporal STDs of the time series differences between AIRS OLR and CERES OLR are 271 

in general smallest for AIRSAVG OLR, especially in the extra-tropics, with values 272 

varying from 0.25 W/m2 to 0.37 W/m2 in all regions. This indicates that up to a bias, 273 

the AIRSAVG OLR and CERES OLR time series agree best over all seasons and over 274 

time. The differences between the AIRSAVG OLR time series and that of CERES OLR 275 

have at most very small drifts in time in all spatial domains. 276 

3.1 Inter-comparison of AIRS OLR and CERES OLR Monthly Climatologies 277 

We generated climatologies for AIRSAM OLR, AIRSPM OLR, and CERES OLR for each 278 

month of the year, on a 1°x1° spatial scale, by taking the monthly mean averages of 279 

OLR in that grid box over the fourteen-year period under study. We generated 280 

AIRSAVG OLR climatologies by first taking the average of the monthly mean AIRSPM 281 

and AIRSAM OLR products for each month and subsequently producing analogous 282 

AIRSAVG climatologies for that month.  283 

Figures 3a and 3b show the spatial distributions of the January AIRSAVG OLR 284 

climatology and of the January CERES OLR climatology respectively. The statistics 285 

on each figure indicate the area weighted global mean value of each field as well as 286 

its area weighted spatial STD. January climatological OLR values are very low at high 287 

latitudes where surface skin temperatures and atmospheric temperatures are both 288 

low. Very low OLR climatological values also occur in some tropical areas that 289 

contain large amounts of high clouds resulting from significant convective activity in 290 
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these regions. Such areas also tend to contain large amounts of Mid-Upper 291 

Tropospheric Humidity (MUTH), which, like high cloud cover, also lowers OLR, 292 

though to a lesser extent.   Figures 3c-e show respectively the spatial differences 293 

from the January CERES OLR climatology of the January AIRSAVG, AIRSAM, and AIRSPM 294 

OLR climatologies from the January CERES OLR climatology, and Figure 3f shows 295 

the differences between the January AIRSPM OLR climatology and the January 296 

AIRSAM OLR climatology.  297 

While January climatological values of AIRSAM OLR best match those of CERES OLR 298 

in the global mean sense, the global mean match between values of AIRSAM OLR and 299 

CERES OLR is very misleading. The January AIRSAM OLR climatology is somewhat 300 

higher than that of CERES OLR over ocean, but is significantly lower than that of 301 

CERES OLR over arid land, which cools considerably at night, with an area weighted 302 

spatial STD of 4.19 W/m2.  Figure 3c shows that the spatial differences between the 303 

January AIRSAVG OLR climatology and the January CERES OLR climatology are much 304 

more homogeneous, with a spatial STD of 2.58 W/m2. This result also demonstrates 305 

that the AIRS OLR calculations treat the large effects of tropical clouds on OLR very 306 

accurately.  307 

The biggest differences between the January AIRSAVG OLR climatology and the 308 

January CERES OLR climatology occur in areas in which the differences between the 309 

January AIRSPM and AIRSAM OLR climatologies are largest, as shown in Figure3f.  310 

AIRS and CERES temporal sampling differences are therefore a factor affecting the 311 

spatial differences between the January AIRSAVG OLR and CERES OLR climatologies. 312 
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 AIRS diurnal January OLR climatological differences are greater than 45 W/m2 over 313 

arid regions such as the Sahara Desert, the southern parts of South America and 314 

South Africa, and Western Australia. The AIRS January OLR climatology in some 315 

Southern Hemisphere tropical oceanic areas is actually somewhat lower at 1:30 PM 316 

than it is at 1:30 AM.  This is a result of increases in low cloud cover in these areas as 317 

sampled by Aqua at 1:30 AM as compared to 1:30 PM. 318 

Doelling et al. (2013) addressed ways to account for diurnal variability of OLR in a 319 

CERES OLR product.  His CERES GEO-combined method, used in CERES_EBAF 320 

Edition 4.0, incorporates hourly imager data from five geostationary satellites to 321 

help account for changes in OLR between CERES observation times. Harries et al. 322 

(2005) obtained very good results using the CERES GEO-combined method, after 323 

removing calibration differences for each CERES instrument, when compared to 15-324 

min resolution OLR as observed from Geostationary Earth Radiation Budget (GERB). 325 

 Using data for January 2005, Doelling et al. (2013) showed that the amplitude of the 326 

OLR diurnal cycle can reach 35 W/m2 over a Saharan desert location (30.5°N, 0.5°E), 327 

over 8 W/m2 in a marine stratus location (20.5°S, 10.5°E), and over 45 W/m2 in a 328 

land convective region (20.5°S, 20.5°E).  329 

Figures 4a-f show analogous July OLR climatologies and climatological differences.  330 

AIRS OLR diurnal differences in arid areas are in general larger in July than they are 331 

in January in both hemispheres. As in January, the differences of AIRSAVG OLR from 332 

CERES OLR are for the most part spatially homogeneous with the exception of land 333 

areas containing very large diurnal differences of OLR.  334 
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4.0 Factors Contributing to Diurnal OLR Climatological Differences 335 

Figures 3f and 4f depict diurnal differences of the AIRS January OLR climatology and 336 

of the July OLR climatology, respectively. Positive OLR diurnal differences are 337 

greatest over arid land in both seasons, with values that are largest in the tropics 338 

and during local summer in the extra-tropics. Moderately positive diurnal OLR 339 

differences also occur over elevated terrain in polar summer in Eastern Antarctica 340 

(January) and over Greenland (July). Polar OLR diurnal differences are close to zero 341 

in both months in local winter. Figure 5 shows diurnal climatological differences of 342 

three AIRS derived geophysical parameters for January and July on which OLR 343 

strongly depends: surface skin temperature Ts; Radiative Effective Cloud Fraction 344 

; and 500 mb specific humidity q(500). OLR increases with increases in Ts and 345 

decreases with increases in   and with increases in q(500). For this reason, 346 

positive (negative) values of diurnal differences of Ts are shown in Figure 5 in 347 

shades of red and green (blue and yellow), and the reverse color code is used for 348 

diurnal differences of    and q(500). Diurnal differences of Ts are always positive 349 

and are largest over tropical and mid-latitude land, especially in local summer. 350 

Moderately positive Ts diurnal differences also occur in polar summer over elevated 351 

terrain such as Eastern Antarctica and Greenland.  Analogous features appear in the 352 

diurnal OLR differences shown in Figures 3f and 4f over land. This demonstrates 353 

that diurnal Ts differences affect those of OLR in these regions. Diurnal Ts differences 354 

are very small over ocean. Diurnal OLR differences over ocean result primarily from 355 

diurnal  sampling differences  356 
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Over land, regions containing large positive diurnal Ts differences (red) often 357 

contain large negative diurnal  differences (red). Reduction of cloud cover during 358 

the day in these regions further enhances the positive temporal effect on OLR of 359 

afternoon warming of land temperatures. One might think that afternoon values of  360 

  over hot convective regions would be high because of increased afternoon 361 

thunderstorm activity, but this phenomenon usually occurs closer to 3:30 PM local 362 

time, a time AIRS does not observe. Diurnal OLR differences over some convective 363 

regions are reduced to some extent by diurnal changes of opposite sign of q(500). 364 

5.0 Inter-comparison of AIRS OLR and CERES OLR Anomaly Time Series 365 

Figure 6 shows anomaly time series of AIRS OLR and CERES OLR as a function of 366 

time over the period September 2002 through August 2016. Figure 6a shows global 367 

mean anomalies, Figure 6b shows tropical mean OLR anomalies, and Figures 6c and 368 

6d show NHET and SHET OLR anomalies respectively. Diurnal differences between 369 

AIRS OLR anomalies exist, but they are small compared to the anomalies themselves. 370 

Figure 6b includes values of the ENI. Tropical mean OLR anomalies tend to track the 371 

ENI to some extent.  The positive tropical mean OLR anomalies in early 2003, in 372 

2007, in early 2010, in 2015, and in early 2016, generally correspond to periods 373 

with positive values of the ENI, during which there are positive Ts anomalies in the 374 

combined Niño-3 and Niño-4 regions. This is especially true in 2015 and 2016. The 375 

negative tropical OLR anomalies in 2006, in 2007, in 2008, and in mid-2010 to early 376 

2012, generally correspond to periods with negative values of the ENI, during which 377 

there are negative Ts anomalies in the combined Niño-3 and Niño-4 regions.  Figure 378 
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6b indicates that tropical mean OLR anomalies tend to lag the ENI by a small amount 379 

in time. The unlagged temporal correlation of tropical mean OLR anomalies with the 380 

ENI is 0.55. The temporal correlation of tropical mean OLR anomalies with the ENI 381 

is largest after a lag of OLR by two months from the ENI, with a lagged temporal 382 

correlation of 0.64.  Global mean OLR anomalies also track the ENI to some extent 383 

because the tropics constitute 50% of the globe.  384 

 NHET OLR anomalies contain a substantial positive peak in early 2016, as do 385 

tropical mean and global mean OLR anomalies. Such positive anomalies in early 386 

2016 do not occur in the SHET OLR anomaly time series. 387 

5.1 Comparison of ARCs of AIRS OLR and CERES OLR  388 

Table 2 presents area mean ARC’s (W/m2/yr) of all AIRS OLR anomaly time series, 389 

as well as those of CERES OLR.  ARCs of all AIRS OLR anomaly time series show 390 

excellent agreement with those of CERES in all regions. This indicates that there was 391 

essentially no drift between the AIRS and CERES OLR data sets over the 14-year 392 

time period studied.   393 

Global mean OLR ARCs are all very slightly positive, with values that are within their 394 

uncertainties. Tropical mean OLR ARCs are all slightly negative, again with values 395 

within their uncertainties. SHET OLR ARCs are all essentially zero. On the other 396 

hand, NHET OLR ARCs are all very positive over this time-period and have values 397 

considerably larger than their uncertainties.  This finding is the result of the large 398 

NHET positive OLR anomalies that occurred in early 2016. The existence of the 399 
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small positive global mean value of OLR ARCs arises primarily from those in the 400 

NHET, which represents 25% of the area of the globe.  401 

With the exception of the SHET, which contains little land, AIRSPM OLR ARCs are all 402 

more negative, or less positive, than AIRSAM OLR ARCs. While the area mean 403 

differences between AIRSPM and AIRSAM OLR ARCs are within their uncertainties, 404 

these differences are not a result of random noise and are a physical result 405 

discussed later.  406 

ARCs of any geophysical parameter can be time-period dependent.  Su et al. (2017) 407 

analyzed AIRS data through December 2013 and showed a significant negative 408 

tropical mean OLR trend of approximately -1.0 W/m2/decade.  The negative short-409 

term OLR trend Su et al. (2017) observed was a result of the 2013 La Niña event that 410 

took place near the end of the time-period they studied. 411 

5.2 Spatial Distributions of ARCs and ENCs of AIRS and CERES OLR  412 

Figures 7a and 7b show the spatial distributions on a 1˚ latitude by 1˚ longitude grid 413 

of the ARCs of AIRSAVG OLR and CERES OLR.  All grid point values shown in these and 414 

subsequent spatial plots have a three-point smoother applied to them in both the 415 

latitude and longitude domains. Reds and greens show positive OLR ARCs and blues 416 

and yellows show negative OLR ARCs.  At least as significant as the values of the OLR 417 

ARCs shown in Figures 7a and 7b are their very coherent spatial structures, which 418 

are virtually indistinguishable from each other. These figures, and all subsequent 419 

spatial plots, contain a black box surrounding the NOAA Niño-4 region and a gray 420 

box surrounding the NOAA Niño-3 region.  421 
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While all global mean and tropical mean OLR ARCs are essentially zero within their 422 

uncertainties, there is considerable spatially coherent structure in the ARCs of OLR, 423 

especially in the tropics. In particular, there are large negative OLR ARCs 424 

surrounding the equator in the region 160˚W eastward to 70˚W, indicating that OLR 425 

has decreased in this region over the time-period under study.  Smaller, but 426 

significant, positive OLR ARCs exist in equatorial areas westward and eastward of 427 

this region that compensate for those negative values in the tropical mean sense.  428 

Figure 7c shows the spatial differences between the ARCs of AIRSAVG OLR and those 429 

of CERES OLR. The area weighted spatial correlation between the two sets of OLR 430 

ARCs is 0.978, and the spatial STD of their differences is 0.047 W/m2/yr.  AIRSAVG 431 

OLR ARCs tend to be slightly more positive (or less negative) than those of CERES 432 

over tropical oceans, and more negative (or less positive) than those of CERES over 433 

the Sahara Desert, Saudi Arabia, and Australia.  The area weighted global mean ARC 434 

of AIRSAVG OLR for this period is 0.005 W/m2/yr less positive than that of CERES.  435 

 Figure 7d shows the spatial differences between the ARCs of AIRSPM OLR and those 436 

of AIRSAM OLR. The largest diurnal differences of ARCs of AIRS OLR occur over 437 

Australia. Therefore, temporal sampling differences may be a factor affecting the 438 

small differences between the ARCs of AIRSAVG OLR and those of CERES OLR over 439 

Australia. Unlike over land, diurnal differences of AIRSAVG OLR ARCs are scattered 440 

over ocean. This is primarily the result of sampling differences of cloud cover as 441 

observed separately during the ascending and the descending orbits of Aqua. 442 



 

 

20 

Figures 7e and 7f show patterns of the ENCs of the AIRSAVG OLR and of the CERES 443 

OLR anomaly time series. ENCs represent correlations and are therefore unit-less, 444 

with values ranging from -1.0 to 1.0.  Reds and greens indicate spatial regions with 445 

positive ENCs, in which anomalies at a given time tend to be of the same sign as the 446 

ENI, while blues and yellows indicate regions with negative ENCs in which the 447 

reverse is true.  As with ARCs, there is excellent agreement between the spatial 448 

patterns of the ENCs of AIRSAVG OLR and the ENCs of CERES OLR. OLR ENCs can be 449 

very large in the tropics, especially within the Niño-4 region in which they are very 450 

negative. This indicates that OLR typically has negative anomalies within the Niño-4 451 

region during El Niño conditions and positive anomalies within the Niño-4 region 452 

during La Niña conditions.  453 

While there are similarities between the patterns of ARCs and ENCs of OLR in the 454 

tropics, there are also some significant differences between them. Unlike OLR ARCs, 455 

which have both positive and negative values within the Niño-4 region, ENCs of OLR 456 

have large negative values within the entire Niño-4 region.  In addition, ENCs of OLR 457 

are small and have mixed signs within the Niño-3 region while ARCs of OLR are 458 

large and negative within in this region. 459 

The differences in signs and relative magnitudes in the tropics with regard to ARCs 460 

of OLR on the one hand, and ENCs of OLR on the other hand, are a result of when 461 

and where El Niño/La Niña activity took place during the period under study. As will 462 

be shown later, most El Niño/La Niña activity took place within the Niño-4 region, 463 

and it occurred primarily in the early to middle part of the time-period under study.   464 
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Consequently, the large negative OLR ENCs found within the Niño-4 region do not 465 

occur within the Niño-3 region.  466 

In the absence of other changes, OLR increases with increasing Ts, which, by 467 

definition, has a positive correlation with the ENI within the Niño-4 region. 468 

Therefore, one might expect to have positive OLR ENCs within the Niño-4 region. 469 

The effect of local increases (decreases) of Ts  on OLR within the Niño-4 region at a 470 

given time is more than offset by corresponding local increases (decreases) in both 471 

high cloud cover and MUTH, each of which decreases (increases) OLR.  Areas 472 

surrounding Niño-4 to the north and south have positive OLR ENCs.  This indicates 473 

that convective activity in those areas tended to increase (decrease) during periods 474 

when it decreased (increased) within the Niño-4 region.    475 

6.0 ARCs and ENCs of Important Geophysical Parameters Affecting OLR 476 

Computed values of AIRS OLR in a FOV depend on the AIRS retrieved geophysical 477 

state in that FOV.  Therefore, one can attribute ARCs and ENCs of AIRS OLR to those 478 

of the AIRS retrieved surface and atmospheric geophysical parameters.  It is 479 

impractical to discuss relevant results of all the geophysical parameters affecting 480 

OLR.  In this paper, for demonstrative purposes, we concentrate on surface skin 481 

temperature Ts; surface air temperature Tsa; 500 mb specific humidity q(500); and 482 

Radiative Effective Cloud Fraction .  Figure 8a shows the spatial distribution of 483 

ARCs of AIRSAVG Ts.  The color code in Figure 8a is analogous to that used in Figure 484 

7a, with positive values depicted in reds and greens and negative values depicted in 485 

blues and yellows.  In the global mean sense, Ts warmed at a rate of 0.019K/yr over 486 
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the 14-year time period under study.  While this increase is consistent with “global 487 

warming”, the earth has not warmed uniformly over the time-period under study. 488 

The earth’s surface has warmed considerably poleward of 70°N, especially west of 489 

the dateline, as well as in an area centered at 50°N and 40°E. There has also been 490 

slight warming during this period over some tropical oceanic areas, especially 491 

within the Niño-3 region. On the other hand, there has been considerable cooling 492 

during this period over Greenland and the ocean surrounding it, as well as over 493 

Eastern Australia and over some oceanic areas poleward of 60°S. 494 

OLR increases with increasing Ts, everything else being equal. Consequently, 495 

features of ARCs of Ts will look like those of ARCs of OLR to the extent that changes 496 

in Ts are the driving force behind changes in OLR. Features of Ts ARCs in mid-high 497 

latitudes are readily apparent in those of OLR ARCs. Therefore, changes in OLR over 498 

time in these regions resulted primarily from changes in Ts.  Note, in particular, the 499 

in-phase relationship poleward of 60°N between the ARCs of OLR and the ARCs of Ts. 500 

Figure 8b shows ARCs of Tsa using the same color scale as in Figure 8a. While OLR 501 

depends significantly on Ts, it depends very little on Tsa. Nevertheless, we show Tsa 502 

because surface air temperature represents the environment in which we live.  ARCs 503 

of Tsa are very similar to those of Ts, but are somewhat smaller and are smoother in 504 

space.  Globally, surface air temperature warmed at a rate of 0.16K/yr, which is 505 

slightly less than that of surface skin temperature. 506 

Figures 8c and 8d show ARCs of q(500) and ARCs of  respectively.  Global mean 507 

ARCs of q(500) and  are each positive.  This indicates that AIRS shows that the 508 
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Earth has both moistened in the middle troposphere during the time-period under 509 

study and has gotten somewhat cloudier over this time-period as well.  A 510 

comparison of Figures 7a and 8c demonstrates that the spatial distribution of 511 

tropical ARCs of q(500) is virtually identical to that of OLR, albeit with an opposite 512 

sign. This shows that temporal changes in tropical OLR are closely related to those 513 

of q(500).   The spatial agreement between ARCs of OLR with ARCs of   is not as 514 

good as it is with ARCs of q(500) because cloud fraction, as shown, refers to total 515 

cloud cover, independent of cloud top pressure.  ARCs of  for high clouds (not 516 

shown) gives a closer spatial agreement with ARCs of OLR. 517 

Figures 9a-d show the spatial distributions of ENCs of AIRSAVG Ts, Tsa, q(500), and  518 

respectively. Figure 9a shows that the largest correlations of Ts with the ENI occur in 519 

the tropics. As expected, Ts anomalies have large positive correlations with the ENI 520 

over each of the Niño-4 and Niño-3 regions.  Figure 9a shows that Ts anomalies also 521 

have positive correlations with the ENI, though less so, in areas immediately to the 522 

north and south of the Niño-4 and Niño-3 regions, and that these areas containing 523 

positive Ts correlations with the ENI extend to the west coasts of the United States 524 

and Canada. Regions to their north, south, and west contain significant negative 525 

correlations of Ts with the ENI. The spatial distributions of ENCs of Ts and ENCs of 526 

Tsa are very similar to each other, but the magnitudes of ENCs of Ts are somewhat 527 

larger than the magnitudes of ENCs of Tsa.  528 

In the tropics, spatial patterns of ENCs of q(500) are similar to those of ENCs of Ts 529 

and ENCs of Tsa because periods of locally warmer (cooler) surface temperatures 530 
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tend to correspond to periods of locally moister (drier) mid-tropospheres. Tropical 531 

OLR ENCs, shown in Figure 7c, are for the most part anti-correlated with ENCs of 532 

q(500) because local increases in q(500) result in local decreases in OLR. Tropical 533 

ENCs of  show some similarity to those of q(500) but with significant differences, 534 

particularly within the Niño-3 region and also off the west coast of North America.  535 

7.0 Hovmöller Diagrams 536 

Hovmöller diagrams are plots of anomalies of geophysical parameters integrated 537 

over a range of latitudes as a function of time and longitude. Figure 7e shows that 538 

the largest correlations and anti-correlations of OLR with the ENI occur near the 539 

equator, in a region extending from 100°E longitude eastward to 80°W longitude. 540 

Hovmöller diagrams help explain the factors affecting this feature.  Figures 10a-10d 541 

show monthly mean Hovmöller Diagrams of Ts, OLR, 500 mb specific humidity, and 542 

  integrated over the latitude range 5°N through 5°S (vertical scale) in each 1˚ 543 

longitude bin (horizontal scale)  for the time-period September 2002 through 544 

August 2016. We applied a 5 point (5 month) linear smoothing in the vertical and a 545 

15-point (15 degree) linear smoothing in the horizontal in order to minimize the 546 

effects of small discontinuities between adjacent rectangular grid points on the 547 

figures. Most of the Hovmöller domain is ocean. There are three relatively small land 548 

areas near the equator: South America, Africa, and Indonesia. These land areas each 549 

lie between the three sets of black vertical lines indicated in Figures 10a-10d. The 550 

three adjacent vertical gray lines in Figure 10 indicate the longitudinal extents of the 551 

Niño-4 region and Niño-3 region respectively. 552 
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Figure 10a depicts positive Ts anomalies in shades of red and yellow, and negative Ts 553 

anomalies in shades of blue and purple. The largest equatorial Ts anomalies 554 

occurred over the ocean between 160˚E, the western edge of the Niño-4 region, and 555 

90˚W, the eastern edge of the Niño-3 region, and sometimes extended further 556 

eastward to 80˚W off the west coast of South America. Significant El Niño events 557 

(dark red and yellow) occurred within the Niño-4 region in 2003, 2010, 2015, and 558 

2016, and significant La Niña events (dark blue and purple) occurred within the 559 

Niño-4 region in 2008 and 2011. The El Niño event beginning in mid-2015 differs in 560 

location from the earlier El Niño events in that it occurred primarily within the 561 

Niño-3 region and extended to the west coast of South America.  562 

Figure 10b depicts the Hovmöller diagram of OLR.  Figure 10b demonstrates that 563 

equatorial OLR anomalies are highly anti-correlated with Ts anomalies within the 564 

Niño-4 region. The same result occurs within the Niño-3 region to some extent after 565 

mid-2015. Figures 10a and 10b explain why OLR anomalies within the Niño-4 566 

region are highly anti-correlated with the ENI. ENCs of OLR within the Niño-3 region 567 

are smaller than they are within the Niño-4 region, and can be positive or negative, 568 

because OLR anomalies within the Niño-3 region have a lower correlation with the 569 

ENI in the early part of the time-period, during which Ts anomalies occurred 570 

primarily within the Niño-4 region. 571 

Figures 10c and 10d show analogous Hovmöller diagrams of q(500) and   572 

respectively. Anomaly patterns of q(500) within the Niño-3 and Niño-4 regions 573 

generally follow those of Ts  very closely, both in relative magnitudes and phase. This 574 
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demonstrates that positive (negative) SST anomalies correspond to periods of 575 

locally increased (decreased) convection, which in turn lead to enhancement 576 

(suppression) of q(500).  These periods often correspond to periods of increased 577 

(decreased) high cloud cover (not shown). Local values of OLR therefore decrease 578 

(increase) during El Niño (La Niña) periods. Cloud cover as shown includes amounts 579 

of low clouds.  Such clouds are not associated convective activity. 580 

8.0 Diurnal Differences of ARCs and ENCs of Relevant Geophysical Parameters 581 

This section compares diurnal differences of the ARCs and ENCs of AIRS OLR with 582 

those of select geophysical parameters on which OLR depends. Figures 11a-c show 583 

the spatial distributions of the ARCs of AIRSPM Ts, of the ARCs of AIRSAM Ts, and of the 584 

difference between their ARCs (AIRSPM minus AIRSAM) respectively. The spatial 585 

features of the PM/AM differences of OLR ARCs, shown in Figure 7d, tend to match 586 

those of Figure 11c in both signs and relative magnitudes in places over land where 587 

both sets of diurnal differences are large. This shows that over land, diurnal 588 

differences of ARCs of Ts are a significant factor affecting the diurnal differences of 589 

ARCs of OLR.  Figure 11d shows the diurnal differences of ARCs of q(500), which 590 

contain only small-scale features that occur primarily over ocean. These features are 591 

most likely a result of sampling differences of anomalies over the month as observed 592 

by AIRS at 1:30 PM and at 1:30 AM respectively. 593 

Figures 12a-d are analogous to Figures 11a-d, but with regard to ENCs of the same 594 

geophysical parameters.  ENCs of Ts at 1:30 PM are very positive over Australia in 595 

those regions in which 1:30 PM ARCs of Ts are very negative. On the other hand, 596 



 

 

27 

ARCs and ENCs of Ts over Australia at 1:30 AM are each small. It is apparent that the 597 

large negative diurnal differences of the ARCs of both Ts and of OLR in Australia are 598 

the result of positive correlations of Ts with El Niño/La Niña activity that occurred 599 

during the day but did not occur appreciably at night. These differences are largest 600 

over Eastern Australia, which we define as eastward of 140°E longitude. As with 601 

ARCs, diurnal differences of ENCs q(500) have only very small spatial scales, related 602 

primarily to sampling differences of q(500) observed at different times of day. 603 

 8.1 Diurnal differences of Ts Anomaly Time Series over Eastern Australia 604 

Figures 13a-13c show monthly mean Ts anomaly time series over Eastern Australia 605 

for 1:30 PM, for 1:30 AM, and for 1:30 PM minus 1:30 AM respectively. These figures 606 

also contain the ENI multiplied by two. The Eastern Australia PM Ts anomaly time 607 

series shows considerable high frequency monthly mean variability not found in the 608 

ENI.   Nevertheless, there is a coarse in-phase relationship over Eastern Australia 609 

between 1:30 PM Ts anomalies and the ENI, with a temporal correlation of 0.45. 610 

There are positive PM Ts anomalies in 2002, 2005, late 2006, late 2009, early 2015, 611 

and early 2016, which are all in phase with positive values of the ENI. Even more 612 

significant are the negative PM Ts anomalies that occurred in late 2007, early 2008, 613 

mid-late 2010, and 2011, which are in phase with negative values of the ENI. The 614 

negative trend of Eastern Australian PM Ts anomalies observed over the time-period 615 

under study is primarily the result of the large negative PM Ts anomalies that 616 

occurred during the La Niña period from mid-2010 through late 2011. This implies 617 
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that daytime surface skin temperatures over Eastern Australia were significantly 618 

cooler than normal during this large La Niña event.  619 

The AM Ts anomaly time series over Eastern Australia is shown in Figure 13b.  AM Ts 620 

anomalies are much smaller than PM Ts anomalies, and have a correlation with the 621 

ENI of only 0.11.  This implies that unlike during the day, El Niño/La Niña events 622 

had little effect on nighttime Ts anomalies over Eastern Australia. Figure 13c, 623 

showing the difference between the Eastern Australian 1:30 PM and 1:30 AM Ts 624 

anomalies, is similar in appearance to Figure 13a because AM Ts anomalies were 625 

small as compared to PM Ts anomalies.  626 

9.0 Summary 627 

This paper compares the temporal and spatial characteristics of three monthly 628 

mean L3 AIRS Version-6 OLR data sets AIRSPM, AIRSAM, and AIRSAVG, with those of 629 

the L3 CERES_EBAF Edition 4.0 OLR data set over a14-year overlap time-period of 630 

the two data sets, September 2002 through August 2016.  AIRS and CERES global 631 

mean OLR time series both show pronounced annual cycles, with maxima in July 632 

and minima in January.  AIRSAVG OLR displays a positive bias as compared to CERES 633 

OLR of roughly 3.0 W/m2 with essentially no drift over the 14 years we compared. 634 

At least part of the differences between the computed AIRS OLR product and the 635 

observed CERES OLR product is a result of limitations in the AIRS OLR RTA, as well 636 

as possible biases in the AIRS retrieved geophysical parameters used in the 637 

computation of AIRS OLR.  In addition, the CERES OLR product also has calibration 638 
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uncertainties.  Temporal sampling differences in the data used by AIRS and CERES 639 

contributed to this bias as well. 640 

There is excellent agreement between the ARCs and ENCs of the AIRSAVG OLR 641 

anomaly time series and the CERES OLR anomaly time series down to the 1˚ x 1˚ 642 

spatial scale.  The excellent agreement in space and time of the two independently 643 

derived OLR data sets serves to validate each OLR data set in terms of both absolute 644 

values and stability.  This agreement also tends to validate the geophysical 645 

parameters derived from the AIRS observations used in the computation of AIRS 646 

OLR, and consequently, it allows for the explanation of OLR variability in terms of 647 

the variability of geophysical parameters.   648 

Fourteen year AIRS and CERES global mean OLR ARCs are essentially zero within 649 

their stated uncertainties, defined as twice the STDs of the linear least squares fits to 650 

their anomaly time-series.  Both AIRS and CERES show, on the other hand, that 651 

Northern Hemisphere extra-tropical OLR ARCs have positive values which agree 652 

well with each other and are both larger than their uncertainties.  This finding is the 653 

result of the considerable warming that took place during the period under study 654 

from the Greenwich Meridian westward toward the dateline poleward of 70N. 655 

The differences between the AIRS and CERES OLR climatologies,  as well as between 656 

the AIRS and CERES OLR anomaly time series, are each largest in a region in Eastern 657 

Australia in which the ARCs and ENCs of AIRSPM Ts differ considerably from those of  658 

AIRSAM Ts. 659 

 660 
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 661 

Appendix A 662 

Observed AIRS channel radiances in a FOV depend on the surface, atmospheric and 663 

cloud conditions within the FOV.  To first order, AIRS observations do not 664 

distinguish between upwelling radiation passing through the clouds, which depends 665 

on the spectral emissivity of the clouds , and radiation coming from around the 666 

sides of clouds, which depends on fractional cloud cover, .  Consequently, the 667 

Version-6 AIRS cloud parameter retrieval algorithm only determines  the product 668 

of these geophysical parameters.  We refer to  as the Radiative Effective Cloud 669 

Fraction.  670 

A-1 Methodology used to compute OLR 671 

The methodology used to compute AIRS Version-6 OLR is analogous to that used in 672 

AIRS Version-5, but with some important differences.  As with AIRS Version-5, AIRS 673 

Version-6 assumes that an AIRS FOV contains up to two distinct layers of clouds as 674 

seen from above, with cloud top pressures pc1 and pc2. Consequently, OLR computed 675 

in an AIRS FOV is given by the linear combination of the OLR arising from up to 676 

three assumed possible scenes found in the FOV: OLR arising from the clear portion 677 

of the scene; and OLR arising from each of the up to two cloudy portions of the scene, 678 

covered by pc1 and pc2 679 

                   OLR = (1-1-2) OLRCLR + 1OLRCLD1 + 2OLRCLD2                    (A1)   680 
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As in Version-5 (Mehta and Susskind 1999a, 1999b), OLR in Version-6 is computed 681 

as the sum of fluxes in each of m contiguous spectral bands.  AIRS Version-6 uses the 682 

Iacono et al. (2008) OLR RTA, which computes OLRCLR as the sum of 16 spectral 683 

components according to 684 

        OLRCLR =     π ∑ [𝜀𝑚B(𝑣𝑚, 𝑇𝑠)𝜏𝑚(𝑝𝑠) + ∫ B(𝑣𝑚
ln𝑝̅

ln𝑝𝑠
, 𝑇(𝑝))

dτ𝑚(𝑝)

dln𝑝
dln𝑝]16

𝑚=1     (A2) 685 

in which B(𝑣, 𝑇) is the Planck blackbody function evaluated at frequency 𝑣 and 686 

temperature T; 𝑣𝑚 is the central frequency of spectral band m; 𝜀𝑚 is the mean 687 

surface emissivity in band m; and 𝜏𝑚(𝑝) represents the effective band averaged 688 

atmospheric transmittance in band m from pressure p to the top of the atmosphere 689 

𝑝̅.  The terms OLRCLD1 and OLRCLD2 used in Equation A1 are computed analogously to 690 

OLRCLR, but with ps in Equation A2 being replaced by pc1 or pc2.  The combined use of 691 

Equations A1 and A2 makes the implicit assumption that cloud spectral emissivity is 692 

independent of frequency. 693 

The OLR RTA used in AIRS Version 6 (Iacono et al., 2008) has two very important 694 

upgrades compared to Mehta and Susskind (1999a; 1999b) which is the OLR RTA  695 

used in AIRS Version-5. The parameterization used in Iacono et al. (2008) was 696 

generated using more up to date line absorption parameters, especially in the very 697 

strong water vapor absorption band near 350 cm-1. In addition, the Iacono et al. 698 

(2008) OLR RTA accounts for the variability of additional atmospheric constituents 699 

such as CO2, CO, and CH4 in the OLR calculation, while Mehta and Susskind (1999a, 700 

1999b) assigned fixed mixing ratios of all trace gases except for water vapor and 701 

ozone. 702 
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Table A1 shows the frequency domains of each of the 16 spectral bands used in 703 

Equation A2. Table A1 includes the global mean annual mean individual spectral 704 

band fluxes (W/m2) of each spectral band and the percentage contribution of each 705 

spectral band to total OLR.  Table A1 also includes the spectral contribution of each 706 

band to two other important geophysical parameters not previously discussed in 707 

this paper, Clear Sky OLR (OLRCLR) and Longwave Cloud Radiative Forcing (LCWRF). 708 

LWCRF, the difference between OLRCLR and OLR, represents the effect of clouds on 709 

OLR. 710 

Almost half of OLR comes from spectral bands 1-3, extending from 100 cm-1 to 630 711 

cm-1.  This is an extensive spectral domain in which AIRS does not make any 712 

observations. The largest approximation made in the current methodology used in 713 

the computation of AIRS OLR is that cloud spectral emissivity ε is frequency 714 

independent. This assumption most likely does not hold at the longer wavelengths 715 

of spectral bands 1-3, especially in the presence of cirrus clouds. The sixth column in 716 

Table A1 shows that the presence of clouds in a FOV decreases total flux on the 717 

average by about 4.8 W/m2 in the longwave spectral domain not observed by AIRS. 718 

The excellent results shown in this paper demonstrates that the approximation of 719 

spectrally independent values of  made in the computation of AIRS OLR works 720 

extremely well, at least on the average.  721 

 722 

 723 

 724 
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Table 1 829 

 830 

 AIRS 1:30 AM 

minus CERES 

AIRS 1:30 PM 

minus CERES 

AIRS 1:30 AM/PM 

 minus CERES 

    

Global Mean    

    Bias  -0.25 6.22 2.99 

    STD 0.22 0.38 0.25 

    Slope (W/m2/yr) 0.0018±0.0085    -0.0068± 0.0145 -0.0028±0.0094 

    

Tropical Mean    

    Bias  -0.21 7.62 3.71 

    STD 0.32 0.42 0.27 

    Slope (W/m2/yr) 0.0054±0.0122   -0.0080±0.0158 -0.0017±0.0102 

    

30N-90N Mean    

    Bias -1.34 6.18 2.42 

    STD 0.73 1.15 0.37 

    Slope (W/m2/yr) -0.0118±0.0277   -0.0022±0.0438 -0.0072±0.0142 

    

30S-90S Mean    

    Bias  -0.75 3.46 2.11 

    STD 0.90 0.45 0.33 

    Slope (W/m2/yr) 0.0082±0.0344   -0.0089±0.0171 -0.0007±0.0126 

 831 

  832 
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Table 2 833 

  

Global Mean 

 

 

Tropical Mean 

 

N.  Hemisphere 

Extra-tropics 

 

S.  Hemisphere 

Extra-tropics 

 

AIRS 1:30 PM  0.0024±0.0189 -0.0163±0.0361 0.0432±0.0406 -0.0008±0.0257 

AIRS 1:30 AM  0.0110±0.0163 -0.0029±0.0312 0.0510±0.0343 -0.0012±0.0261 

AIRS 1:30 AM/PM  0.0064±0.0174 -0.0100±0.0335 0.0469±0.0370 -0.0013±0.0256 

CERES  0.0112±0.0179 -0.0063±0.0345 0.0554±0.0366  0.0020±0.0259 

 834 

  835 
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Table A1 836 

 837 

Band 

Number 

Frequency 

Range 

Clear Sky OLR 

 

OLR LWCRF 

  Flux % Flux % Flux % 

1 100-350 34.79 13.03 34.40 14.14 0.39 1.65 

2 350-500 42.90 16.06 40.97 16.84 1.93 8.09 

3 500-630 38.94 14.58 36.46 14.99 2.48 10.41 

4 630-700 10.27 3.85 10.26 4.22 0.01 0.06 

5 700-820 32.37 12.12 29.04 11.94 3.33 13.96 

6 820-980 46.77 17.51 39.89 16.40 6.88 28.83 

7 980-1080 16.88 6.32 14.50 5.96 2.37 9.96 

8 1080-1180 17.69 6.62 14.73 6.05 2.97 12.44 

9 1180-1390 17.13 6.41 14.70 6.04 2.43 10.20 

10 1390-1480 2.43 0.91 2.26 0.93 0.17 0.72 

11 1480-1800 2.95 1.10 2.78 1.14 0.17 0.70 

12 1800-2080 2.37 0.89 2.01 0.83 0.36 1.53 

13 2080-2250 0.79 0.30 0.63 0.26 0.16 0.69 

14 2250-2380 0.05 0.02 0.05 0.02 0.00 0.00 

15 2380-2600 0.44 0.16 0.34 0.14 0.10 0.44 

16 2600-3260 0.34 0.13 0.25 0.10 0.08 0.34 

 838 

  839 



 

 

42 

Figure and Table Captions 840 

 841 

Table 1: 842 

Area mean values of the mean difference (AIRS OLR minus CERES OLR), and 843 

standard deviation (STD) of the differences, for each of the three sets of AIRS OLR, 844 

as well as the slopes of the linear least squares fit to the differences between AIRS 845 

and CERES OLR (W/m2/yr) for the period September 2002 through August 2016. The 846 

uncertainties of the slopes are twice the STDs of the linear least squares fits to the time 847 

series of differences. 848 

 849 

Table 2: 850 

Area mean AIRS and CERES OLR ARCs (W/m2/yr). The uncertainties of the ARCs are 851 

twice the STDs of the linear least squares fits to the anomaly time series. 852 

 853 

 854 

 855 

Table A1: 856 

Frequency ranges of the spectral bands used to compute AIRS OLR global mean 857 

annual mean band fluxes (W/m2), and the percentage contribution of each band to 858 

Clear Sky OLR, OLR, and LWCRF. 859 

 860 

Figure 1 861 

Monthly mean area mean AIRS and CERES OLR time series data from September 862 

2002 through August 2016 over four spatial domains: global; the Northern 863 

Hemisphere extra-tropics; the tropics; and Southern Hemisphere extra-tropics. The 864 

vertical black lines indicate January of each year.  865 

 866 

Figure 2 867 

The differences (AIRS minus CERES) of area mean OLR time series from September 868 

2002 through August 2016 over the same four spatial domains shown in Figure 1.   869 

 870 

Figure 3 871 
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AIRS and CERES monthly mean January OLR climatologies and climatological 872 

differences on a 1°x1° spatial scale. The statistics under each figure indicate the area 873 

weighted global mean (GM) value of the field and the area weighted spatial standard 874 

deviation (STD). 875 

 876 

Figure 4 877 

AIRS and CERES monthly mean July OLR climatologies and climatological 878 

differences on a 1°x1° spatial scale.  879 

 880 

Figure 5 881 

AIRS day minus night climatological differences of Surface Skin Temperature, 882 

Radiative Effective Cloud Fraction, and 500 mb Specific Humidity for January and 883 

July. 884 

 885 

Figure 6 886 

AIRS and CERES monthly mean area mean OLR anomaly time series from 887 

September 2002 through August 2016 over four spatial domains: global; the 888 

Northern Hemisphere extra-tropics; the tropics; and the Southern Hemisphere 889 

extra-tropics. The tropical OLR anomaly time-series also shows monthly mean 890 

values of the El Niño Index. 891 

 892 

Figure 7 893 

ARCs (W/m2/yr) and ENCs of AIRSAVG OLR and CERES OLR over the time-period 894 

September 2002 through August 2016. The NOAA Niño-4 region is outlined in black, 895 

and the NOAA Niño-3 region is outlined in gray, in this figure as well as in some 896 

subsequent figures. 897 

 898 

Figure 8  899 

Spatial 1˚ latitude by 1˚ longitude distributions of ARCs of AIRSAVG Surface Skin 900 

Temperature, Surface Air Temperature, 500 mb Specific Humidity, and Radiative 901 

Effective Cloud Fraction over the time period September 2002 through August 2016. 902 

 903 

 904 
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Figure 9 905 

Spatial 1˚ latitude by 1˚ longitude distributions of ENCs of AIRSAVG Surface Skin 906 

Temperature, Surface Air Temperature, 500 mb Specific Humidity, and Radiative 907 

Effective Cloud Fraction over the time-period September 2002 through August 2016. 908 

 909 

Figure 10 910 

Hovmöller diagrams of AIRSAVG monthly mean anomaly time-series integrated over 911 

the latitude range 5˚N through 5˚S (vertical scale) in each 1˚ longitude bin 912 

(horizontal scale), for the period September 2002 through August 2016. a) Surface 913 

Skin Temperature (K), b) OLR (W/m2), c) 500 mb Specific Humidity (g/kg), d) 914 

Radiative Effective Cloud Fraction (%).  915 

 916 

Figure 11 917 

ARCs over the time-period September 2002 through August 2016 of AIRS 1:30 PM 918 

Surface Skin Temperature, AIRS 1:30 AM Surface Skin Temperature, AIRS 1:30 PM 919 

minus 1:30 AM Surface Skin Temperature, and AIRS 1:30 PM minus 1:30AM 500 mb 920 

Specific Humidity. 921 

 922 

Figure 12 923 

ENCs over the time-period September 2002 through August 2016 of AIRS 1:30 PM 924 

Surface Skin Temperature, AIRS 1:30 AM Surface Skin Temperature, AIRS 1:30 PM 925 

minus 1:30 AM Surface Skin Temperature, and AIRS 1:30 PM minus 1:30 AM 500 926 

mb Specific Humidity. 927 

 928 

Figure 13 929 

Monthly mean Surface Skin Temperature anomaly time series averaged over 930 

Eastern Australia for the time period September 2002 through August 2016 a)1:30 931 

PM, b)1:30 AM, and c)1:30 PM minus 1:30 AM. Also shown on each figure is twice 932 

the ENI. 933 

 934 
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Figure 7.



 

    Mean = -0.005 STD = 0.047 Cor= 0.978     Mean = -0.009 STD = 0.116 Cor= 0.871 

   c)    AIRS Average minus CERES      d)  AIRS 1:30 PM minus 1:30 AM 
                 Mean = 0.006 STD = 0.222                        Mean = 0.011 STD = 0.227 

     OLR ARC’s (W/m2/yr) September 2002 through August 2016 
a)               AIRS Average                  b)                     CERES  

 

                  Mean = 0.010 STD = 0.222                         Mean = 0.013 STD = 0.243 

  OLR ENC’s September 2002 through August 2016 
 e)               AIRS Average                   f)                     CERES 

 



Figure 8.



   

  c) 500 mb Specific Humidity (g/kg/yr)   d)           Cloud Fraction (%/yr) 
 

                 Mean = 0.019 STD = 0.036                        Mean = 0.016  STD = 0.029   
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  c)       500 mb Specific Humidity        d)                Cloud Fraction  
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  c) 500 mb Specific Humidity (g/kg)      d)            Cloud Fraction (%) 
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