Anthropogenic contributions to the 2021 Pacific Northwest heatwave

Emily Bercos-Hickey1, Travis Allen O'Brien2, Michael F Wehner3, Likun Zhang4, Christina M Patricola5, Huanping Huang1, and Mark Risser1

1Lawrence Berkeley National Laboratory
2Indiana University Bloomington
3Lawrence Berkeley National Laboratory (DOE)
4University of Missouri
5Iowa State University

November 24, 2022

Abstract

Daily maximum temperatures during the 2021 heatwave in the Pacific Northwest United States and Canada shattered century old records. Multiple causal factors, including anthropogenic climate change, contributed to these high temperatures, challenging traditional methods of attributing human influence. We demonstrate that the observed 2021 daily maximum temperatures are far above the bounds of Generalized Extreme Value distributions fitted from historical data. Hence, confidence in Granger causal inference statements about the human influence on this heatwave is low. Alternatively, we present a more conditional hindcast attribution study using two regional models. We performed ensembles of simulations of the heatwave to investigate how the event would have changed if it had occurred without anthropogenic climate change and with future warming. We found that human activities caused a 1C increase in heatwave temperatures. Future warming would lead to a 5C increase in heatwave temperature by the end of the 21st century.
Anthropogenic contributions to the 2021 Pacific Northwest heatwave

Emily Bercos-Hickey1, Travis A. O’Brien2,1, Michael F. Wehner1, Likun Zhang3,1, Christina M. Patricola4,1, Huanping Huang1, Mark D. Risser1

1Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
2Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana, USA
3Department of Statistics, University of Missouri, Columbia, Missouri, USA
4Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, USA

Key Points:

• The Pacific Northwest heatwave was a compound event involving a blocking pattern, atmospheric river, drought conditions, and climate change.
• Statistical and global climate models fail to inform about human influence on the Pacific Northwest heatwave due to the event’s uniqueness.
• Hindcast attribution methods can provide limited and conditional information about the human influence on the Pacific Northwest heatwave.

Corresponding author: Emily Bercos-Hickey, ebercoshickey@lbl.gov
Abstract

Daily maximum temperatures during the 2021 heatwave in the Pacific Northwest United States and Canada shattered century old records. Multiple causal factors, including anthropogenic climate change, contributed to these high temperatures, challenging traditional methods of attributing human influence. We demonstrate that the observed 2021 daily maximum temperatures are far above the bounds of Generalized Extreme Value distributions fitted from historical data. Hence, confidence in Granger causal inference statements about the human influence on this heatwave is low. Alternatively, we present a more conditional hindcast attribution study using two regional models. We performed ensembles of simulations of the heatwave to investigate how the event would have changed if it had occurred without anthropogenic climate change and with future warming. We found that human activities caused a 1°C increase in heatwave temperatures. Future warming would lead to a 5°C increase in heatwave temperature by the end of the 21st century.

Plain Language Summary

While it is clear that global warming causes heatwaves to be warmer, the unique meteorological conditions behind the 2021 Pacific Northwest heatwave tax our ability to make quantitative estimates of the human contribution. We discuss why there is low confidence in traditional estimates of the human contribution to this heatwave’s temperatures and present an alternative, albeit more highly constrained estimate that human activities caused a 1°C increase in the observed daily maximum temperatures. Additional future warming would lead to a 5°C increase in the heatwave by the end of the 21st century.

1 Introduction

On June 26–29, 2021, an unprecedented heatwave affected the Pacific Northwest (PNW) of the United States and western Canada. Temperature records were shattered, with all-time highs of 116°F (47°C) in Portland, Oregon, 108°F (42°C) in Seattle, Washington, and 121°F (49°C) in Lytton, British Columbia (Di Liberto, 2021). Heatwaves, characterized by prolonged periods of excessive heat, can have dangerous impacts on human health, infrastructure, and the environment (McEvoy et al., 2009; Perkins-Kirkpatrick & Alexander, 2013; Campbell et al., 2018; Ruffault et al., 2020), and the PNW heatwave was no exception. Over 500 deaths were attributed to the heatwave (Popovich & Choi-Schagrin, 2021), and the environment and infrastructure throughout the affected region were strained and damaged, with crops ruined and roads buckled due to the excessively hot temperatures (Baker & Sergio, 2021). The devastating and large-scale impacts of the PNW heatwave were exacerbated by the lack of adaptability of a region unaccustomed to such extreme high temperatures, with the observational record suggesting that this was a highly anomalous event (Figure 1).

The meteorological conditions of the PNW heatwave were similar to previous deadly heatwaves in Europe and Russia (Black et al., 2004; Dole et al., 2011). These events are associated with atmospheric blocking patterns, which are known to cause extreme heatwaves (Miralles et al., 2014; Horton et al., 2015; Schaller et al., 2018) and are characterized by a persistent, quasi-stationary, and often anticyclonic obstruction of the usual zonal flow (Rex, 1950; Sumner, 1954; Woollings et al., 2018). During the PNW heatwave, the high pressure of an omega block was centered over Washington and British Columbia (Figure S1) leading to subsidence and a multi-day period of hot, dry weather throughout the region (Neal et al., 2022). Additionally, an anomalous warm-season atmospheric river (AR) made landfall over the Alaska panhandle in late June and injected a large amount of moisture into western Canada and the PNW. The accumulation of water vapor under the high pressure of the atmospheric blocking pattern may have formed a positive
feedback loop that further enhanced the heatwave (Lin et al., 2022; Mo et al., 2022). These
two weather patterns were also superimposed on dry soil conditions, as 50% of Wash-
ington state and 70% of Oregon were in severe drought conditions in June 2021 (drought-
monitor. uni.edu).

The unprecedented nature of the PNW heatwave is also consistent with expecta-
tions from global warming (Perkins-Kirkpatrick & Gibson, 2017). Heatwaves have in-
creased since the 1950s (Perkins, 2015), and this observed increase in the frequency, in-
tensity, and duration of heatwaves has been attributed to anthropogenic climate change
(Meehl & Tebaldi, 2004; Diffenbaugh & Ashfaq, 2010; Perkins et al., 2012; Wuebbles et
al., 2014; Min et al., 2013; Wehner et al., 2018). The Intergovernmental Panel on Cli-
mate Change (IPCC) Sixth Assessment Report found that many heatwaves around the
world could be attributed to human influence (Seneviratne et al., 2021). Future warm-
ing will further increase the frequency, intensity, and duration of heat extremes (Vogel
et al., 2020), with the potential for temperatures to often reach dangerous levels for hu-
man health and agriculture (Sun et al., 2019).

The World Weather Attribution initiative (WWA, https://www.worldweatherattribution.org/)
performed analyses of the PNW heatwave within weeks of the event and made three rapid
attribution statements, which were later published (Philip et al., 2021). First, the ob-
served temperatures recorded were “virtually impossible” without anthropogenic climate
change. Second, after estimating that the observed temperatures had a return period of
approximately 1000 years, such annual maximum daily maximum temperatures (TXx)
“would have been at least 150 times rarer without human-induced climate change”. Third,
the heatwave was about 2°C warmer than it would have been without climate change
based on the change in 1000 year return values of TXx.

In this study, our objective is to revisit these rapid attribution statements and to
advance our understanding of how climate change affected the PNW heatwave. In sec-
tion 2, we discuss the limitations of statistical models to estimate the rarity of the PNW
heatwave. In section 3, we describe our experimental design of dynamical model simu-
lations of the PNW heatwave under past, present, and future climate conditions using
two regional climate models. In section 4, we discuss the resulting temperature changes
from these simulations. Finally, we present our conclusions in section 5.

2 Statistical modeling

Figure 1a shows maximum daily maximum temperatures between June 25 and July
4, 2021 from the Global Historical Climatology Network (GHCN) station data. Figure
1a reveals that most stations in this region had values greater than 45°C. Figure 1b com-
pares the summertime (June/July/August, JJA) TXx from all of the US stations within
the WWA region (45°N–49°N, 123°W–119°W) over 1920-2020 to those from June 25 to
July 4, 2021. Figure 1c shows JJA TXx averaged over all of the US stations in this re-
gion for each year. From Figures 1b,c, it is clear that the PNW heatwave was an out-
lier event compared to previous summertime maximum temperatures and will challenge
statistical modeling.

Philip et al. (2021) found that the 2021 spatially averaged temperatures from the
ERA5 reanalysis (Hersbach et al., 2020) exceeded the upper bound of an out of sample
non-stationary generalized extreme value (GEV) distribution fit to data from 1950 to
2020. They then included the 2021 values, estimating that the current return period of
the PNW heatwave was about 1000 years. Comparing this return period to that obtained
under preindustrial temperatures, they concluded that the probability of the PNW heat-
wave was increased by a factor of 390. Further analysis of climate model simulations and
their expert judgement caused them to conclude that the probability of the observed tem-
perature was increased by at least 150 as their final synthesis attribution statement.
Figure 1. Observational station data from the Global Historical Climatology Network (GHCN) of (a) the maximum daily maximum temperature between June 25 and July 4, (b) histograms of the summertime (June/July/August, JJA) maximum daily maximum temperature (i.e., JJA TXx) from the US stations within the WWA region (45°N–49°N, 123°W–119°W), as defined by Philip et al. (2021), in 1920-2020 and in 2021 and (c) the average JJA TXx by year from the US stations within the same region. The dashed line is the Bayesian expectation of the upper bound on daily maximum temperature averaged across the US stations within the WWA region.

We repeat this non-stationary GEV analysis on individual station data from 1950-2020 instead of averaging over the WWA study region. In each single-station analysis, we use a GEV distribution with a location parameter linearly dependent on a sum-total forcing variable for five well-mixed greenhouse gases to accommodate non-stationarity (e.g. Risser et al. (2022)), which imposes a non-linear time trend in the GEV model. Details of the GEV analysis are discussed in Supplemental Section 1.

Figure 2a shows the Bayesian expectation of the upper bound for daily maximum temperatures for the 1950-2020 GHCN station data. Stations where the observed 2021 values exceed the expectation of the upper bound (‘+’) reveal that most of the heatwave’s maximum temperatures are outside of the range of the GEV model. Figure 2b shows the 2021 out of sample return times for the GHCN stations, where many stations realized return times in excess of 2000 years during the 2021 PNW heatwave. The probability of 2021 temperatures exceeding this GEV upper bound (Figure 2c) further illustrates that the out of sample GEV fails to describe the 2021 PNW heatwave. Including the 2021 temperatures in the GEV fitting procedure extends the upper bounds to include these values in the distribution, but the distributions are a poor fit to the rest of the data. Using a χ² goodness-of-fit test, the p-values calculated without 2021 values are generally greater than 0.2, demonstrating strong evidence of an underlying GEV distribution. However, the p-values calculated when 2021 temperatures are included are less than 0.05, indicating that the distribution is significantly different from GEV. Figure 1b, constructed by binning all GHCN station data from 1920-2020 (blue) and 2021 (red), further suggests that the temperatures of the 2021 heatwave are drawn from different distributions than previous years that is not accounted for by the time-dependent greenhouse gas covariate. The above evidence suggest that the critical GEV assumption of independent and identically distributed (i.i.d.) data is violated when 2021 temperatures are included.

Given that an in-sample GEV distribution is a poor fit to the GHCN data and that the combined effects of the atmospheric blocking pattern and anomalous AR were likely unique, we conclude that there should be little confidence in attribution statements based on in-sample GEV formulations. Philip et al. (2021) argued that the temperatures reached...
Figure 2. Results from fitting the non-stationary GEV distribution to station data from 1950 to 2020: (a) Bayesian expectation (posterior mean) for the GEV distributional upper bound; (b) Bayesian expectation for the return periods of 2021 JJA TXx (calculated using the fitted non-stationary GEV distribution). In both panels, ‘+’ signifies that the 2021 JJA TXx exceeded the Bayesian expectation of the GEV distributional upper bound, which leads to infinite return periods in (b); (c) The overall probability of 2021 TXx exceeding the GEV upper bound given the observations.

during the PNW heatwave were “virtually impossible” without climate change. However, this is not supported from a purely Granger causal inference perspective (Ebert-Uphoff & Deng, 2012; Hannart et al., 2016) due to the failure of the GEV methodology. Our statistical analysis supports an attribution statement that these temperatures were virtually impossible under any previously experienced meteorological conditions, with or without global warming. Pearl causal inference statements (Pearl, 2009) about the change in magnitude of the PNW heatwave from global warming, assuming a fixed but unspecified return time, can be informed by climate models as discussed in the next section.

3 Dynamical Models and Experimental Design

From section 2, the PNW heatwave of 2021 was an extreme outlier event. Traditionally, Pearl causal inference attribution statements are made with long simulations of global climate models, usually in pairs forced with both anthropogenic and natural forcing factors (Stott et al., 2016). However, another more conditional form of Pearl causal inference attribution statements can be formulated with the hindcast attribution (Wehner et al., 2019) or pseudo-global warming (PGW) method (Schär et al., 1996; Patricola & Wehner, 2018; Bercos-Hickey & Patricola, 2021; Bercos-Hickey et al., 2021; Patricola et al., 2022). In this approach, ensembles of regional climate model simulations are performed with historical initial and boundary conditions and are then compared with simulations performed with counterfactual initial and boundary conditions that have been adjusted by a climate change difference, or delta, that takes into account the thermodynamic component of anthropogenic climate change. While no attribution statement can be made about the human-induced change in probability of the event, quantitative attribution statements about the human-induced change in the magnitude of the event can be made with this more restricted approach.

In this study, the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) version 3.8.1 was used to perform hindcast simulations of the PNW heatwave. To understand the impacts of model structural uncertainty, we performed a similar suite of simulations using the International Centre for Theoretical Physics Regional
Climate Model (RegCM) version 4.9.5 (Giorgi et al., 2012). The WRF hindcast simulations were initialized on June 24, 2021 0000 UTC and ran continuously through July 4, 2021 with initial and boundary conditions from the 32 km resolution National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR). Further details of the WRF simulations are discussed in Supplemental Section 2. The RegCM hindcast simulations were initialized on June 22, 2021 0000 UTC and ran continuously through July 02, 2021 with initial and boundary conditions from the Global Forecast System (GFS) version 4 0.5-degree analysis. Further details of the RegCM simulations are discussed in Supplemental Section 3. Ten-member ensembles were performed for each model configuration and the effects of horizontal resolution were explored by configuring the models with grids of 18 km and 50 km spacings over the chosen domains (Figure S2).

To establish the validity of the heatwave simulations, we compare the WRF and RegCM hindcasts with observational and reanalysis data. As shown in Supplemental Section 4, the WRF and RegCM hindcasts accurately capture the key features of the PNW heatwave. The hindcasts of the heatwave event were best represented at 18 km (Supplemental Section 4), and thus for the remainder of the analysis we use the 18 km resolution simulations.

In addition to the hindcast simulations, three ten-member ensembles under counterfactual conditions were performed using the PGW method to understand the effects of global warming on the PNW heatwave. The cooler “world that might have been” without the current amount of anthropogenic climate change permits attribution statements about the observed magnitude of the event. Two warmer “worlds that might be” simulations were performed with mid- and late-21st century climate conditions under the Shared Socioeconomic Pathway 585 (SSP585) emissions scenario (O’Neill et al., 2016) to further elucidate the effect of global warming on the event. For the “world that might have been”, the deltas were calculated using the difference between historical and naturally forced (hist-nat) simulations from the multi-model average of the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Danabasoglu, 2019) data (see Table S1). Thus the effects of anthropogenic forcing are removed but the natural solar and volcanic forcing effects are retained. The “world that might be” deltas were calculated using the difference between the historical and mid- and late-21st century future SSP585 simulations from the CMIP6 multi-model average. Additional details on the PGW experiments are discussed in Supplemental Section 5. Lastly, to examine the effects of climate change on soil moisture-temperature feedbacks, hist-nat, mid-, and late-21st century experiments were conducted with the 18 km WRF model by additionally altering soil moisture. A summary of all model experiments is shown in Table S2.

In the following section, our analyses utilize spatial averages over the region 45°N-52°N and 124°W-119°W (Figure S2). Because WRF and RegCM were run at finer resolution than the CMIP-class models in Philip et al. (2021), we extended the region of interest to the west to be closer to the coast than the WWA region.

4 Changes in PNW heatwave temperature

The effects of the current amount of climate change on the PNW heatwave are assessed by comparing the WRF and RegCM simulations in the historical and hist-nat climates. Figure 3 shows the June 25-July 1, 2021 time series of (a) the GHCN, NARR, GFS, WRF, and RegCM daily maximum temperature and (b) the WRF and RegCM temperature differences between the climate scenarios and the historical. Contours of the maximum temperature on June 28, the hottest day of the GHCN station observations (Figure 3a), are shown for the (c)(f) historical, (d)(g) historical minus hist-nat, and (e)(h) late-century minus historical simulations from the 18 km (c)-(e) WRF and (f)-(h) RegCM. From Figure 3d, the WRF model clearly exhibits warming from the hist-
the historical climate except for some cooling at the Oregon coast. From Figure 3g, the RegCM model exhibits a more heterogeneous warming and the cooling is shifted northward to the coast of British Columbia. In our analysis region (Figures 3c,f black box), the ensemble average increase in the daily maximum two-meter temperature on June 28 is 0.95±0.22°C for WRF and 0.66±0.05°C for RegCM from the hist-nat to the historical, where the uncertainty bounds are calculated from the standard error. Over the four-day period June 27-30, during which multiple temperature records were broken, the average increase in daily maximum two-meter temperature is 0.98±0.40°C for WRF and 0.78±0.07°C for RegCM from the hist-nat to the historical. The blue lines in Figure 3b reveal that the attributable warming in the WRF model averaged over the region of interest (about 1°C) does not change much during the heatwave event. The RegCM, which here differs from the WRF model in that soil moisture was not altered in the hist-nat simulations, exhibits a decrease in attributable warming until June 28 and then an increase until July 1.

Figure 3e shows that the WRF simulated heatwave is warmer over the entire domain under late-century conditions when compared to the historical simulations. Similar warming is also seen in the WRF simulations under mid-century conditions (not shown). In contrast, Figure 3f shows that while the RegCM model warms over the majority of the region under late-century conditions, cooling is simulated along the coast of southern Oregon and northern California. This coastal cooling in the RegCM late-century simulations is likely due to a complicated interaction between changes in onshore winds and a warmed ocean and is influenced by the choice of boundary layer parameterization scheme. In our analysis region (Figures 3c,f black box), the average increase in the daily maximum two-meter temperature on June 28 is 1.55±0.29°C for WRF from the historical to the mid-century, and is 4.68±0.26°C for WRF and 4.57±0.04°C for RegCM from the historical to the late-century. During the peak days of the heatwave, the June 27-30 average increase in maximum daily two-meter temperature is 1.71±0.39°C for WRF from the historical to the mid-century, and is 5.41±0.41°C for WRF and 5.20±0.06°C for RegCM from the historical to the late-century.

The red lines in Figure 3b compare the regionally averaged temperature change between the present and late-century under SSP585 forcing conditions. The orange line shows a similar result for the WRF model under mid-century SSP585 forcing conditions. In these warmer simulations, the anthropogenic warming of the PNW heatwave gradually reduces until the hottest days are reached, June 29, 2021. Afterwards, the anthropogenic warming increases as the heatwave evolves for both models, lengthening the duration of the heatwave in both the WRF and RegCM simulations. This behavior is also exhibited in the RegCM historical compared to hist-nat simulations (blue dashed line), but is not for WRF, where the regionally averaged anthropogenic warming is relatively constant over the entire duration of the simulation.

To examine the effects of soil moisture-temperature feedback on the PNW heatwave, we performed WRF experiments with and without the soil moisture delta. Inclusion of the soil moisture delta causes warmer climates to have drier soil and cooler climates to have wetter soil. Figure 4 shows the June 28, 2021 ensemble-averaged maximum two-meter temperature from the 18 km WRF (a) hist-nat, (b) mid-century, and (c) late-century experiments with the soil moisture delta minus the experiments without the soil moisture delta. Panel (d) shows the June 25-July 1 time series of the daily maximum temperature in the soil moisture minus no soil moisture experiments. From Figure 4a, the heatwave in the hist-nat climate is cooler across most of the region when the soil moisture delta is included, reflecting an increase in evapotranspiration cooling. In our analysis region (Figures 3c,f black box), the average daily maximum two-meter temperature in Figure 4a is 0.10±0.21°C cooler in the hist-nat experiment with the soil moisture delta than it is without. Figures 4b,c indicate that the heatwave in the mid- and late-century climates is warmer across almost all of the region when the soil mois-
Figure 3. June 25-July 1, 2021 daily maximum temperature (a) from the GHCN, NARR, GFS, and the WRF and RegCM historical 18 km ensembles, and daily maximum temperature difference (b) between the WRF and RegCM historical and hist-nat, mid-century (WRF only), and late-century ensembles averaged over the region 45°N-52°N and 124°W-119°W. The shading in panel (a) shows the range of values over the WRF and RegCM 10-member ensembles. Ensemble-averaged daily maximum 2 m temperature (°C) on June 28 of the (c)(f) historical, (d)(g) historical minus hist-nat, and (e)(h) late-century minus historical simulations from the 18 km (c)-(e) WRF with the soil moisture delta and (f)-(h) RegCM. Black boxes in panels (c) and (f) are the regions used for spatial averaging, also shown in Figure S2.
ture delta is included, reflecting a decrease in evapotranspiration cooling due to less available soil moisture. The average daily maximum two-meter temperature in Figures 4b, c is $0.78 \pm 0.34 \, ^\circ\text{C}$ and $0.90 \pm 0.28 \, ^\circ\text{C}$ warmer in the mid- and late-century experiments with the soil moisture delta, respectively.

The blue line in Figure 4d reveals that the effects of soil moisture on the hist-nat simulations remains relatively constant throughout the duration of the heatwave. In contrast, the future climate simulations (Figure 4d orange and red lines) exhibit a temporally dependent enhancement of the effects of the soil moisture delta as the heatwave progresses. Roughly following the simulated temperature itself (Figure 3a), the effect of decreased soil moisture peaks at about $1.0 \, ^\circ\text{C}$ and $1.2 \, ^\circ\text{C}$ warmer in the mid- and late-century experiments, respectively.

5 Conclusions

The 2021 Pacific Northwest (PNW) heatwave was a rare and unprecedented compound weather event. An unusual summertime atmospheric river interacted with an omega block pattern and preexisting dry soil conditions to shatter century-old temperature records by several degrees Centigrade. While there is little doubt that anthropogenic global warming contributed to the probability and magnitude of the extreme temperatures, the uniqueness of the event precludes quantifying this influence by traditional event attribution methods. In section 2, we demonstrated that out of sample fitted non-stationary Generalized Extreme Value (GEV) distributions fail to contain many of the observed 2021 observations within the uncertainty estimates of their upper bounds. While including the 2021 temperatures in the GEV fitting procedure extends the upper bounds to include these values in the distribution, these distributions are a poor fit to the rest of the data. The underlying reason for this failure of traditional statistical methods is that the uniqueness of the 2021 PNW heatwave violates the i.i.d. assumption of GEV theory. We therefore conclude that estimates of the PNW heatwave return times are not accurate and that confidence in GEV-based estimates of the human influence on the change in the probability of the observed extreme temperatures should be low. We further conclude that quantitative changes in event magnitude and frequency from CMIP-class models (Wehner et al., 2020, 2018; Philip et al., 2021) are made with low confidence as it is not clear that global climate models can adequately simulate the relevant meteorological phenomena of the PNW heatwave (van Oldenborgh et al., 2021, 2022).

In sections 3, 4, we present an alternative but more limited attribution of the anthropogenic changes to the PNW heatwave using ensembles of simulations from the regional models WRF and RegCM, where the pseudo-global warming (PGW) method was used to examine the effects of removing anthropogenic warming and additional future warming. We find that the historical model simulations are in agreement with their initial and boundary condition datasets, but that the observed and simulated gridded products are cooler than station observations during the hot portion of the event. Comparison of the historical heatwave with a counterfactual heatwave in a world without human-induced warming indicates that the anthropogenic temperature increase is about $1 \, ^\circ\text{C}$ and relatively constant over the course of the event. In contrast, the heatwave in an SSP585 world with significant future warming would be $5 \, ^\circ\text{C}$ warmer, and the anthropogenic influence extends the peak of the heatwave, indicating a future increase in heatwave duration.

These anthropogenic increases in extreme temperatures during the PNW heatwave are less than previous estimates (Philip et al., 2021). One possible reason for this is that severe drought conditions were being experienced in June 2021 in much of the southern portion of our analysis region, reducing the evapotranspiration cooling in our cooler counterfactual “world that might have been”. In section 4, we examined the effects of soil moisture in the PGW experiments and found that, at current levels of global warming,
Figure 4. Ensemble-averaged daily maximum 2 m temperature (°C) on June 28, 2021 from the 18 km WRF (a) hist-nat, (b) mid-century, and (c) late-century experiments with the soil moisture delta minus the experiments without the soil moisture delta. The June 25-July 1, 2021 daily maximum temperature difference between the experiments with and without the soil moisture delta averaged over the region 45°N-52°N and 124°W-119°W (d).
this cooling is altered by only about 0.10°C. As precursor soil conditions from the drought are drier than the average conditions used in traditional CMIP-class heatwave attribution statements, this is not unexpected. Even in much warmer late-century conditions, the maximum soil moisture-temperature feedback is 1.2°C out of over 6°C averaged over our analysis region. While it may be that the amplification of the anthropogenic temperature change during heatwaves (Seneviratne et al., 2021) is diminished by pre-existing drought conditions, this is not the case in much warmer future simulations. Clearly, our understanding of all the physical mechanisms behind this extreme heatwave and their anthropogenic changes is limited (van Oldenborgh et al., 2022) and our traditional attribution tools fail for this and other extreme outlier events. However, there may be opportunities to remedy this by examining the large coupled and uncoupled model ensembles (Kay et al., 2015; Stone et al., 2019). Presently, however, we do not know with confidence whether the 2021 PNW heatwave and the associated weather patterns will remain an outlier event or is a harbinger of things to come.

Open Research

The WRF and RegCM simulation data used for the pseudo-global warming analysis in the study are available at https://portal.nersc.gov/cascade/PNW_Heatwave. CMIP6 data is available through Danabasoglu (2019).

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division, Regional & Global Model Analysis Program, under Award Number DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. DOE under Contract No. DE-AC02-05CH11231. We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF. This project was also partially supported by the Environmental Resilience Institute, funded by Indiana University’s Prepared for Environmental Change Grand Challenge initiative.

References

and health impact research: A global review. *Health & Place, 53*, 210-218.

e2021GL097699 2021GL097699 doi: https://doi.org/10.1029/2021GL097699

on in situ measurements of seasonal total and extreme daily precipitation.

*Climate Dynamics. doi: 10.1007/s00382-021-05638-7

Wehner, M., Stone, D., Shio\, gama, H., Wolski, P., Ciavarella, A., Christidis, N., &

Supporting Information for “Anthropogenic contributions to the 2021 Pacific Northwest heatwave”
Emily Bercos-Hickey¹, Travis A. O’Brien²,¹, Michael F. Wehner¹, Likun Zhang³,¹, Christina M. Patricola⁴,¹, Huanping Huang¹, Mark D. Risser¹

¹Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
²Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana, USA
³Department of Statistics, University of Missouri, Columbia, Missouri, USA
⁴Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, USA

1. Non-stationary GEV analysis

The non-stationary generalized extreme value (GEV) analysis on individual station data uses a GEV distribution with a location parameter linearly dependent on a sum-total forcing variable for five well-mixed greenhouse gases (WMGHGs) to accommodate non-stationarity (Risser et al., 2021). The five WMGHGs include carbon dioxide, CFC-11 and CFC-12 halocarbons, methane and nitrous oxide, whose concentration values come from Meinshausen and Vogel (2016) and Meinshausen and Nicholls (2018) and whose forcing formulae can be found in Etminan, Myhre, Highwood, and Shine (2016) and Hodnebrog et al. (2013). To estimate the GEV parameters, we impose a non-informative
prior on the shape parameter (Zhang & Shaby, 2022), and then run a Metropolis-Hastings algorithm to draw samples from the posterior distributions of the parameters. Since the GEV distribution has a finite upper bound when the shape parameter is negative, we can directly examine the posterior distribution of the upper bound.

2. Configuration of the Weather Research and Forecast (WRF) model

Some simulations of the PNW heatwave in this study were performed using the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) version 3.8.1. Model output was generated every hour with 50 vertical levels from a grid with horizontal spacings of either 18 km or 50 km. The WRF simulation domains are shown in Figure S2a. Parameterization schemes used in all simulations include: the Rapid Radiative Transfer Model for Global Climate Models (Iacono et al., 2008) short and longwave schemes, the WRF single-moment 6-class microphysics scheme (Hong & Lim, 2006), the Noah land surface model scheme (Chen & Dudhia, 2001), the Medium Range Forecast (MRF) boundary layer scheme (Hong & Pan, 1996), and the Grell-Freitas ensemble cumulus scheme (Grell & Freitas, 2014). Ten-member ensembles at both grid spacings were generated using the Stochastic Kinetic Energy Backscatter Scheme (SKEBS) (Shutts, 2005; Berner et al., 2011). SKEBS uses random stream function perturbations to represent model uncertainty from unresolved scales and has previously been used to generate WRF ensembles (Berner et al., 2011; Patricola & Wehner, 2018). The daily maximum temperature and geopotential height contours at 500 hPa on June 28, 2021 are shown for the ten ensemble members at 18 km and the ensemble average in Figure S3.
3. Configuration of the International Centre for Theoretical Physics Regional Climate Model (RegCM)

Some simulations of the PNW heatwave in this study were performed using the International Centre for Theoretical Physics RegCM4 regional model (Giorgi et al., 2012). The simulations were configured with 18 km and 50 km horizontal grid spacings and 30 sigma levels with a model top pressure of 50 hPa, a timestep of 36 seconds, and model output saved every 3 hours. The RegCM simulation domains are shown in Fig. S2b. The simulations used hydrostatic dynamics, the National Center for Atmospheric Research (NCAR) Community Climate Model 3 radiation parameterization (Kiehl et al., 1996), the University of Washington turbulence closure and planetary boundary layer parameterization (Grenier & Bretherton, 2001; O’Brien et al., 2012), the Massachusetts Institute of Technology convection parameterization (Emanuel, 1991; Emanuel & Živković-Rothman, 1999), and the Biosphere Atmosphere Transfer Scheme 1e (Dickinson et al., 1993). Ensemble simulations at 18 km and 50 km resolution were generated by perturbing the initial and boundary condition temperature field by 0.1% (O’Brien et al., 2011). The daily maximum temperature and geopotential height contours at 500 hPa on June 28, 2021 are shown for the ten ensemble members at 18 km and the ensemble average in Figure S4.

The RegCM 4.9.5 simulations are based on the master branch of the github code at commit 8197f9, with an additional bug fix applied that allows the code to run at the National Energy Research Supercomputing Center (NERSC). (This bug fix was merged with the master branch of the code in commit 6b43573.)

4. Model Validation

May 11, 2022, 4:53pm
To establish the validity of the heatwave simulations, we compare the WRF and RegCM hindcasts, the datasets that provided their initial and boundary conditions (ICBCs), NARR and GFS, respectively, and the GHCN observational data. Figure 3a shows the June 25-July 1, 2021 daily maximum temperature averaged over the region 45°N-52°N and 124°W-119°W (Figure S2) from the GHCN (black), ensemble-averaged WRF historical simulations (blue, solid), NARR (blue, dashed), ensemble-averaged RegCM historical simulations (red, solid), and GFS (red, dashed). The shading around the WRF and RegCM lines show the range of values from the 10-member ensembles. From Figure 3a, the NARR and GFS are over 6°C cooler than the GHCN and about a day late in reaching the hottest temperatures. The timing and magnitude of the daily maximum temperatures throughout the heatwave from the WRF and RegCM models are mostly in close alignment with the NARR and GFS, respectively. The differences between the WRF and the NARR and the RegCM and the GFS seen in Figure 3a are not surprising and are likely due to the models departing from their initial conditions and the chosen parameterization schemes. Although both models and the data used for their ICBCs produce a cooler and delayed heatwave, WRF and RegCM are consistent with each other in their simulations of the heatwave event despite using different ICBCs and parameterizations.

To further examine the validity of the WRF and RegCM hindcasts, we compare the models with the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis five (ERA5) (Hersbach et al., 2020) on June 28, 2021, the hottest day of the heatwave from the GHCN (Figure 3a). Figure S5 shows the daily maximum temperature and 500 hPa height contours from (a) the ERA5, (b) the ensemble-averaged WRF hist-
torical simulations, and (c) the ensemble-averaged RegCM historical simulations. Figure S5a shows the high temperatures and omega blocking pattern that were distinct features of the PNW heatwave. Figures S5b,c show that the WRF and RegCM models are correctly replicating the key features of the heatwave, thus lending confidence to the hindcast simulations.

Lastly, we examine how the horizontal spatial resolution may affect the hindcast simulations. The effects of resolution on the WRF and RegCM simulations can be seen in Fig. S6, which shows the June 25-July 1, 2021 time series of the spatially averaged (see Figure S2) daily maximum temperature from the GHCN, NARR, GFS, and the ensemble averages of the 18 km and 50 km WRF and RegCM historical simulations. For the WRF model, Figure S6 shows that there is little difference between the daily maximum temperature at 18 km and 50 km. For the RegCM model, Figure S6 indicates that the daily maximum temperature is similar between the two resolutions, with a notable exception on June 29 where it is cooler at 18 km than at 50 km.

Figures S7 and S8 show the daily maximum temperature and geopotential height contours at 500 hPa on June 28, the hottest day of the heatwave according to the GHCN (Figure S6), for the ten ensemble members and the ensemble average from the 50 km historical simulations of the WRF and RegCM models, respectively. A comparison of Figures S3 and S7 reveals that the WRF model simulates the omega blocking pattern and high temperatures of the heatwave at both resolutions. Similarly, a comparison of Figures S4 and S8 indicates the the RegCM model also simulates the omega blocking pattern and high temperatures at both resolutions.
To visualize the differences between the 18 km and 50 km resolution simulations, Figure S9 shows the ensemble average of the daily maximum temperature on June 28 from the (a) 18 km WRF, (b) 50 km WRF, (d) 18 km RegCM, and (e) 50 km RegCM historical simulations. The difference between the daily maximum temperature in the 18 km and 50 km ensemble averages is shown for the (c) WRF and (f) RegCM models. From Figure S9a,b, the WRF model is capturing the high temperatures associated with the heatwave event at both resolutions. Figure S9c indicates that, for most of the region affected by the heatwave, the 18 km simulations are 0-2°C warmer than the 50 km simulations. From Figure S9d,e, the RegCM model is mostly capturing the high temperatures associated with the heatwave, although temperatures in eastern Washington are notably lower in the 50 km simulations. In contrast to the WRF model, the difference between the RegCM 18 km and 50 km simulations (Figure S9f) shows large positive and negative anomalies throughout the domain. The anomalies in Figure S9f are likely due to the elevation differences between the two resolutions, where the 50 km simulations will not resolve terrain as well as the 18 km simulations. The 50 km simulations are therefore warmer in higher elevation regions such as the North Cascades and the Sierra Nevada Mountains. Although the choice of resolution does not strongly affect the ability of the WRF and RegCM models to capture the overall characteristics of the PNW heatwave (see Figures S3, S7, S4, and S8), due to the elevation bias present in the 50 km simulations, we use the 18 km WRF and RegCM simulations for the remainder of the analysis.

5. **Pseudo-global warming (PGW) / Hindcast Attribution methodology**
The PGW Hindcast Attribution method assumes that similar synoptic conditions, mainly the omega block and atmospheric river, that produced the PNW heatwave in the historical time period could happen in past and future climates. This is a restrictive assumption, precluding any statement about how the frequency of such large scale conditions will change. The variables adjusted in the WRF initial and boundary conditions include temperature, relative humidity, geopotential height, sea-level and surface pressure, sea-surface temperature, and surface temperature; for RegCM, only the temperature and specific humidity fields were altered. Additionally, we modified the WRF radiation code to account for different greenhouse gas concentrations of CO₂, CH₄, N₂O, CFC-11, CFC-12 and CCl₄ in the counterfactual climate simulations consistent with pre-industrial and Shared Socioeconomic Pathway 585 (SSP585) (O’Neill et al., 2016) specifications (Meinshausen & Vogel, 2016). Greenhouse gas concentrations were modified in RegCM using built in tables for the year 1850 and for the year 2090 under the SSP585.

The PGW deltas were calculated from the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Danabasoglu, 2019) data by computing a multi-model average (Table S1) and subtracting the 1995-2014 averaged historical simulations from: 1) The averaged hist-nat simulations; 2) The 2040-2060 averaged SSP585 simulations (mid-century); and 3) The 2080-2100 averaged SSP585 simulations (late-century). The length of the historical timeframe was chosen to capture the historical climate and to smooth out any multi-decadal variability. The hist-nat simulation resembles the historical simulation but only includes solar and volcanic forcing (Eyring et al., 2016) and the SSP585 simulation incorporates future emissions and land use changes (O’Neill et al., 2016). Deltas were
calculated for the month of the heatwave event and were added to the corresponding initial and boundary conditions. Hist-nat, mid-century, and late-century simulations were performed with the WRF model, and only nat-hist and late-century simulations were performed with the RegCM model.

References

May 11, 2022, 4:53pm

May 11, 2022, 4:53pm

May 11, 2022, 4:53pm

Figure S1. National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) 500 hPa height contours on June 28, 2021.
Figure S2. Simulation domains for the (a) WRF model, and (b) RegCM. The red boxes show the region 45°N-52°N and 124°W-119°W, which is used for spatial averaging and is common to both models.

Table S1. CMIP6 models used to calculated the multi-model averaged deltas used in the pseudo-global warming method.

<table>
<thead>
<tr>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESS-CM2</td>
</tr>
<tr>
<td>ACCESS-ESM1-5</td>
</tr>
<tr>
<td>CESM2</td>
</tr>
<tr>
<td>CNRM-CM6-1</td>
</tr>
<tr>
<td>CanESM5</td>
</tr>
<tr>
<td>FGOALS-g3</td>
</tr>
<tr>
<td>GFDL-CM4</td>
</tr>
<tr>
<td>GFDL-ESM4</td>
</tr>
<tr>
<td>GISS-E2-1-G</td>
</tr>
<tr>
<td>HadGEM3-GC31-LL</td>
</tr>
<tr>
<td>IPSL-CM6A-LR</td>
</tr>
<tr>
<td>MIROC6</td>
</tr>
<tr>
<td>MRI-ESM2-0</td>
</tr>
<tr>
<td>NorESM2-LM</td>
</tr>
</tbody>
</table>
Figure S3. Historical 18 km WRF simulation (a)-(j) individual ensemble members and (k) ensemble-average of the daily maximum 2 m temperature (°C; color contours) and geopotential height at 500 hPa and 0000 UTC (m; white contour lines) on June 28, 2021.

Table S2. Summary of model experiments, where an X indicates that an experiment was performed for the given model.

<table>
<thead>
<tr>
<th>Experiments</th>
<th>WRF 18km</th>
<th>WRF 50km</th>
<th>RegCM 18km</th>
<th>RegCM 50km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hist-nat</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mid-century</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late-century</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hist-nat with soil moisture delta</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-century with soil moisture delta</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late-century with soil moisture delta</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S4. Historical 18 km RegCM simulation (a)-(j) individual ensemble members and (k) ensemble-average of the daily maximum 2 m temperature (°C; color contours) and geopotential height at 500 hPa and 0000 UTC (m; white contour lines) on June 28, 2021.
Figure S5. June 28, 2021 (a) ERA5, (b) WRF 18 km historical ensemble average, and (c) RegCM 18 km historical ensemble average of the daily maximum 2 m temperature (°C; color contours) and geopotential height at 500 hPa and 0000 UTC (m; white contour lines).
Figure S6. Time series from June 25-July 1, 2021 of the spatially averaged daily maximum temperature from the GHCN (black), NARR (blue, dashed), GFS (red, dashed), the 18 km WRF (blue, solid) and RegCM (red, solid) historical ensemble averages, and the 50 km WRF (blue, dotted) and RegCM (red, dotted) historical ensemble averages.
Figure S7. Historical 50 km WRF simulation (a)-(j) individual ensemble members and (k) ensemble-average of the daily maximum 2 m temperature (°C; color contours) and geopotential height at 500 hPa and 0000 UTC (m; white contour lines) on June 28, 2021.
Figure S8. Historical 50 km RegCM simulation (a)-(j) individual ensemble members and (k) ensemble-average of the daily maximum 2 m temperature (°C; color contours) and geopotential height at 500 hPa and 0000 UTC (m; white contour lines) on June 28, 2021.
Figure S9. Historical ensemble-averaged daily maximum 2 m temperature (°C; color contours) from WRF at (a) 18 km, (b) 50 km, and (c) 18 km minus 50 km, and RegCM at (d) 18 km, (e) 50 km, and (f) 18 km minus 50 km on June 28, 2021.