Vertical shears of horizontal winds in the lower thermosphere observed by ICON

Scott L England\(^1\), Christoph R Englert\(^2\), Brian J Harding\(^3\), Colin Triplett\(^4\), Kenneth D Marr\(^5\), John M Harlander\(^6\), Gary R. Swenson\(^7\), Astrid Maute\(^8\), and Thomas J. Immel\(^1\)

\(^1\)Virginia Polytechnic Institute and State University
\(^2\)Naval Research Laboratory
\(^3\)UC Berkeley
\(^4\)University of California, Berkeley
\(^5\)U.S. Naval Research Laboratory
\(^6\)St. Cloud State University
\(^7\)University of Illinois at Urbana Champaign
\(^8\)National Center for Atmospheric Research (UCAR)

November 23, 2022

Abstract

Vertical shears of horizontal winds play an important role in the dynamics of the middle and upper atmosphere. Prior observations have indicated that these shears predominantly occur in the lower thermosphere. MIGHTI observations from the Ionospheric Connection Explorer indicate that strong wind shears are a common feature of the lower thermosphere and vary greatly between orbits. This work focuses on these strong shears, and examines their occurrences, horizontal scales and underlying organization. No preferred wind shear direction is found. The shears that persist for a short horizontal extent are slightly larger in amplitude and more numerous than those that persist across large horizontal scales. The altitude at which the strongest shears occur often shows a downward progression with local time, following the climatological winds. Consistent with prior observations, the strongest shears are often seen just below the wind maximum, which follows the downward phase propagation consistent with upward propagating tides.
Vertical shears of horizontal winds in the lower thermosphere observed by ICON

Scott L. England¹, Christoph R. Englert², Brian J. Harding³, Colin C. Triplett³, Kenneth Marr², John M. Harlander⁴, Gary R. Swenson⁵, Astrid Maute⁶, and Thomas J. Immel³

¹ Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States
² U.S. Naval Research Laboratory, Washington DC, United States
³ Space Sciences Laboratory, University of California Berkeley, Berkeley, California, United States
⁴ Space Systems Research Corporation, Alexandria, Virginia, United States
⁵ Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
⁶ National Center for Atmospheric Research, Boulder, Colorado, United States

Corresponding author: Scott L. England (englands@vt.edu), Orcid: 0000-0001-5336-0040

Key points

1. Strong horizontal wind shears with spatial scales from 100s km to over 10,000 km are observed with ICON MIGHTI
2. Systematic patterns in the strongest shears observed in the lower thermosphere are examined.

3. The strongest shears display an altitude variation in local time that reflects the downward phase progression in the tidal winds.

Abstract

Vertical shears of horizontal winds play an important role in the dynamics of the middle and upper atmosphere. Prior observations have indicated that these shears predominantly occur in the lower thermosphere. MIGHTI observations from the Ionospheric Connection Explorer indicate that strong wind shears are a common feature of the lower thermosphere and vary greatly between orbits. This work focuses on these strong shears, and examines their occurrences, horizontal scales and underlying organization. No preferred wind shear direction is found. The shears that persist for a short horizontal extent are slightly larger in amplitude and more numerous than those that persist across large horizontal scales. The altitude at which the strongest shears occur often shows a downward progression with local time, following the climatological winds. Consistent with prior observations, the strongest shears are often seen just below the wind maximum, which follows the downward phase propagation consistent with upward propagating tides.

Plain Language Summary

Understanding wind patterns is a key component to understanding our atmosphere. Gradients in these winds, seen as regions where slow and fast moving air are in close proximity, or air
moving in opposite directions is in close proximity, can play especially important roles in atmospheric motion and mixing of the air. At altitudes near the edge of space, such gradients are known to be especially large. New observations from the Ionospheric Connection Explorer (ICON) spacecraft have shown that these gradients are often present in this region, but can vary greatly from one orbit of the spacecraft to the next. This work examines the characteristics of the gradients observed with ICON. The analysis presented shows the direction and magnitude of these gradients, at what time of day and what altitude they are observed. The altitude where the strongest gradients are observed is shown to change with time of day.

1 Introduction

Vertical shears of horizontal winds play an important role in a variety of dynamical processes in the middle and upper atmosphere. The presence of strong shears can significantly impact and even inhibit the upward propagation of atmospheric gravity waves (e.g., Fritts and Alexander, 2003). Shears in zonal winds are believed to play a central role in producing narrow layers of metal ions associated with Sporadic-E (e.g., Whitehead, 1961; Axford, 1963, Larsen et al., 2005). In regions of the middle and upper atmosphere where such shears become especially large, the atmosphere can become dynamically unstable, leading to the formation of Kelvin-Helmholtz instabilities (e.g., Li et al 2005). While climatologies of the winds (e.g., HWM; Drob et al., 2015) reveal only modest wind shears in the lower thermosphere, high vertical-resolution observations (e.g., Larsen, 2002) frequently reveal shears that are close to this instability threshold, which may have important implications for the neutral dynamics of this region,
resulting in modified vertical constituent and heat fluxes as well as dynamo processes impacting the ionosphere.

Both horizontal winds and their shears are especially strong in the region of the lower thermosphere where the background vertical temperature gradient turns positive (approximately 100 – 120 km altitude). These strong winds and shears are evident in global climatologies of the wind (e.g., McLandress et al., 1996, Shepherd et al., 2012), which highlight local amplitude maxima of atmospheric tides at these altitudes. In addition to such climatologies, strong winds and shears are especially notable in individual samples of the winds in this region, where the shears have been seen to maximize in the 100 – 110 km altitude region (Larsen, 2002). Using global temperature observations, Offerman et al., (2009) demonstrated that atmospheric waves persistently increase in amplitude in this altitude range. Therefore, it is not surprising that observations of the winds and wind shears in this region frequently exhibit strong wave-like fluctuations at this altitude (e.g., Djuth et al., 2010; Hysell et al., 2014).

Examination of wind-shears in the lower thermosphere over approximately 100 – 120 km altitude is not possible from the majority of ground-based radar systems (e.g., Jacobi and Arras, 2019). Altitude-resolved horizontal wind observations, suitable for determining vertical shears, can be made in this altitude range from ground-based systems such as incoherent scatter radars (e.g., Djuth et al., 2010; Hysell et al., 2014) and lidars (e.g., Gardner and Papen, 1995; Fritts et al., 2004; Oppenheim et al., 2009; Yue et al., 2010). Both kinds of instruments provide
detailed information on the vertical shears and their temporal evolution, but only at a very
limited number of locations. Remote observations of rocket trails have been used to investigate
winds and shears extensively (e.g., Larsen, 2002 and references therein). These also provide
high-resolution vertical sampling of the wind across this altitude range. Although such
observations have been made from low to polar latitudes, each rocket launch provides only one
or two vertical profiles; thus they provide little information on the temporal or horizontal
variation in the shears observed. Using over 400 such rocket trails observations, Larsen (2002)
demonstrated that the observed maximum wind shear most often occurs in the vicinity of the
altitude of maximum wind amplitude. Larsen and Fesen (2009) further analyzed the original
Larsen (2002) data-set identifying the altitude of the maximum wind to be 100-105 km,
exceeding 100 ms\(^{-1}\) in over 28% of the samples. No other pattern to the shears in local time (LT)
or season was evident.

In contrast to the high-vertical resolution sampling offered from rocket trail observations, limb-
viewing interferometers can provide lower vertical-resolution profiles of the winds in this
region, with the advantage of being able to provide global-scale characteristics of the winds and
shears (e.g., Shepherd et al., 2012; Liu et al., 2018). The magnitude of the shears estimated
from such lower resolution measurements tend to be lower than those from the other
instruments listed above, but the studies such as Liu et al. (2018) have been able to
demonstrate global-variations in the shears, noting that they tend to maximize at mid-latitudes.
What is not known is if there are other patterns governing where strong shears occur, or if
there is a clear relationship between the very strong shears that are seen in individual vertical
profiles and climatologies of the winds in this region. Are the wind shears identified in rocket
and ground-based measurements coherent across a large horizontal region or not?

Here we use one year of wind observations from the Ionospheric Connection Explorer (ICON)
spacecraft (Immel et al., 2018) to examine the wind shears in the lower thermosphere. We
examine the altitude of the strongest shears observed and their correspondence to the
background wind magnitudes. The distribution of wind shears is examined, along with the
spatial coherence of the wind shear, as seen parallel to the spacecraft orbit track. This study
focuses on the largest wind shears observed, rather than a climatology of the winds and the
shears evident therein (e.g., Yamazaki et al., 2021). The correspondence between strong shears
seen in individual profiles and the climatology of the winds is determined.

2 Data and Method

The ICON Michelson Interferometer for Global High-Resolution Thermospheric Imaging (ICON
MIGHTI; Englert et al., 2017) instrument measures the line-of-sight Doppler shift of airglow
emission from atomic oxygen. Using two nearly orthogonal measurements separated by ~7
minutes, a horizontal wind vector is retrieved from these data (Harding et al., 2017). Here we
use version 04 of the derived horizontal vector winds. During the daytime, the 557.7 nm
emission is observed from 90 – 180 km tangent altitude. A measurement of the winds is made
every 30 seconds, or approximately every 250 km great circle distance during the day. In the
lower thermosphere, the horizontal winds are retrieved on a fixed vertical grid with a grid size
of ~2.9 km.
Figure 1 shows an example of the daytime zonal wind observations from five successive orbits in March 2020. The data are shown such that the horizontal axis indicates LT. In four of the five orbits shown, strong shears in the zonal wind are evident in the lower thermosphere. In the first two orbits, strong shears of nearly the same gradient appear to persist over a large span of LT (and correspondingly longitude), changing slightly in altitude with LT. This pattern does not appear to be fixed in LT and is different on each of the five consecutive orbits shown. On the final orbit, the wind shears seen are significantly weaker. From this kind of plot, no overarching patterns are apparent from one orbit to the next or one day to the next.

As the altitude of the wind shears seen in Figure 1 varies with location, it is more useful to compute the maximum wind shear observed at any one time and record its location, rather than find the wind shears at a fixed altitude. There are several obvious ways to determine the wind shear, and here we chose to find the maximum gradient using a forward-difference approach (qualitatively similar results are achieved by using a central-difference approach, with sometimes smaller wind gradients estimated with such a technique if a gradient is not constant over the entire range). Even using this approach, it is worth acknowledging that MIGHTI lacks the vertical resolution to see the kind of wind shears reported in some of the prior studies noted in Section 1. For each zonal or meridional wind profile, we first select all data in the altitude range 92.8 – 133.1 km, which tends to envelope the region where the maximum wind shears are found, both in MIGHTI and prior studies (see Section 1). If all datapoints in that range are of good quality (using the ICON_L22_Wind_Quality variable), the maximum absolute
gradient is recorded and registered to the altitude of the midpoint of the two corresponding wind samples. Figure 2a shows this for the zonal wind profiles corresponding to the first orbit shown in Figure 1. The maximum wind shears at each longitude are highlighted. For all profiles, the maximum shear magnitude, direction (positive east, north), altitude, LT, longitude, and latitude are recorded. Figure 2b shows the gradients found for this orbit. The positive and negative shears identified for this orbit are shown with the red and blue symbols. In some regions of the orbit the maximum shear remains of a constant sign for a significant fraction of the globe, whereas in others it changes between positive and negative rapidly. For each datapoint, the horizontal scale over which the sign of the shear remains constant is recorded (the great circle distance shown by the horizontal red and blue lines). This process is then repeated for all observed profiles during the first complete year of the ICON mission, 2020. It is worth noting that the typical precision of the wind measurements is 5 m/s, so the 1-sigma uncertainty on the computed shear (using 5 measurements, separated by 2.9 km) is ~12 m/s/km. Shears greater than this are thus statistically significant at the 1-sigma level.

To compare the wind shears observed by ICON MIGHTI to those simulated in a global scale model, output from the ionosphere-thermosphere extension of the Whole Atmosphere Community Climate Model (WACCM-X 2.0; Liu et al., 2018) is used. To match the conditions observed by ICON, the GEOS5 reanalysis is used to specify dynamics in the lower atmosphere. This simulation used a 1.9° latitude, 2.5° longitude grid that is comparable to the MIGHTI sample size. It is worth noting that this model uses parametrized gravity waves to capture the
impacts of these sub-grid-scale features. The output of this model was sampled at the same locations and times as every datapoint in the MIGHTI dataset and processed in the same manner as described above.

3 Results

This section first details the properties of the maximum wind shears by examining the first 90 days (approximately two precession cycles) of data from 2020. Variations throughout the whole year are then shown.

Figure 3a and b show the distribution of the magnitudes of the maximum zonal and meridional shears over the first 90 days of 2020. Both distributions are symmetric about zero, meaning that no preference for a shear direction is seen. Both show modal values in the region of 20 m/s/km, with the meridional shears begin slightly larger than the zonal ones. Shears above 40 m/s/km are seen, but at a low occurrence rate. As expected, this is lower than the maximum shears reported from rocket trail data (e.g. Larsen, 2002), which had a higher vertical resolution. To identify any trend in the shears with the horizontal scale of constant shear direction, the population is divided into two groups consisting of the shears associated with a horizontal scale of less than 2000 km great circle (short) with those beyond 2000 km great circle (long). No apparent change in the distribution is evident in either case, implying no dependence on the magnitude of the shear observed with the horizontal scale of constant shear direction. The shears simulated in the WACCM-X model show the same overall trend as those seen in MIGHTI, but with a factor of 2 lower shear magnitude seen in both the zonal and meridional
shears. This is likely due to the coarse model resolution, and its inability to resolve small-scale gravity waves (see Liu, 2017).

The distribution of the observed horizontal scales of constant maximum wind shear direction are shown in Figure 3c and d for the zonal and meridional shears respectively. Here the occurrence rate refers to the fraction of the total wind samples in that group. A large fraction of the distribution lies below 2000 km great circle distance, but horizontal scales of up to 10,000 km are occasionally observed. To identify if the horizontal scale of the constant maximum wind shear direction is manifestly different between those of small and large shear magnitude, the population is divided into two groups, above and below 15 m/s/km (based on Figure 3a and b, and comparable to the 10 m/s/km threshold used by Liu et al., 2018). The population with large shear magnitude is similar to the whole population, whereas those with small magnitude reveal slightly fewer occurrences at the smallest great circle distances, and an increase at the larger scales (especially clear in the meridional shears). Finally, the distribution for the shears found in the WACCM-X output are shown. These show a much flatter distribution, with many fewer occurrences of smaller horizontal scale events and more of the longer horizontal scale than those observed by MIGHTI under any of the selection criteria.

Figure 3e and f show the altitude where the maximum wind shears occur. As seen in Figure 2 regions of both strong positive and negative shears can be seen within the same profile. Clear patterns in the altitude of the maximum shears appear if only one shear direction is selected, and here the negative meridional wind shears are shown. To further identify the pattern, only
shears in the 15 – 25° N latitude range are selected, and the data are shown as a function of local time (LT). Figure 3e shows this for the entire population, whereas Figure 3f shows this only for the short horizontal scale population described above. In both cases, a clear downward progression of the altitude of maximum windshear is seen with increasing LT. In the case of the latest LT bin, a new peak is evident at the very highest altitude, suggesting a cyclical pattern.

Looking at the rate of downward progression for example in panel e, the peak moves ~9 km over 6 hours. If this represented a diurnal motion that would correspond to a 36 km in 24 hours and for a semi-diurnal motion it would be 18 km in 12 hours. The diurnal motion would be consistent with the wavelength of the migrating diurnal tide in this region (e.g., McLandress et al., 1996; Akmaev et al., 1997). This behavior is investigated in more detail across the entire year in Figure 4.

Figure 4 shows the altitude of the peak positive and negative wind shears in the 15 – 25° N latitude throughout the whole year. Data are shown in 90-day increments, which provides enough samples for notable patterns to be discerned in most cases. As in Figure 3e, each panel shows the distribution of altitudes at three different LT ranges. The overall behavior noted in Figure 3 of the descending altitude of the mode of the distribution with increasing LT is seen in several panels (specifically a, b, e, h and k). There is no clear distinction between the behavior of the positive and negative shears that persists throughout the year. In the panels that do not display the same overall pattern as noted in Figure 3, the most common pattern is a single altitude that does not change with LT (e.g., panels d and g). Finally, the tendency for a
secondary peak to appear at the higher altitudes in the final LT bin is visible in panels a, b, e, j
and k.

Comparing the altitude of the peak wind shear to the median wind values as a function of
altitude (Figure 4 panels c, f, i and l) reveals a likely cause of the downward progression noted
above. This climatological view of the average wind does not reveal the strong shears that are
the focus of this study, but rather the average wind associated with the migrating tides (as all
longitudes are averaged together, non-migrating components are minimized). These median
winds show a similar downward descent in the wind pattern with increasing LT as expected for
upward propagating tides. Comparing the first two columns of Figure 4 to the median winds, it
is evident that in most cases the peak positive or negative wind shears tend to occur at or just
below the altitudes where the average wind shows a strong positive or negative magnitude,
suggesting that the background tidal field governs the altitude at which we tend to see the
strong wind shears.

4 Discussion and Conclusions

This study focuses on the strongest wind shears observed by ICON MIGHTI, rather than on the
climatological winds and their shears. These strongest shears are most commonly seen in the
100 – 120 km altitude region, in agreement with that reported from prior rocket trail
observations (Larsen, 2002) and spacecraft-based observations (Liu et al., 2018).
Examining the degree of symmetry in Figure 3a, b there appears to be no preferred direction for the strong wind shears magnitudes. The WACCM-X results show the same symmetry, but generally lower shears. As both of these involve averages across all dayside LT, any signature of atmospheric tides (evident in Figure 4) would average out and thus produce this apparent symmetry. The observed meridional shears are generally slightly stronger than the zonal ones, but only by a few m/s/km, which is not seen in the model. The origin of this difference in zonal and meridional shears is not known.

Examining the differences between the short horizontal scale wind shears and either the whole population or the long horizontal scale shears, we see very little difference. This is clear in Figure 3a, b and comparing e to f. This implies that the population of short horizontal scale wind shears is not impacted significantly by any spurious datapoints or other non-geophysical source. While the origin of these short-horizontal scale shears is not clear from this study alone, one possible geophysical source would be small horizontal-scale gravity waves (e.g. Liu, 2017).

Panels c and d show that the small horizontal-scale shears tend to have larger magnitudes, which is again apparent in panels a and b where the long scale is has a slightly large occurrence rate near the peak of the distribution, whereas the short scale occurs slightly more often at the highest wind shear values. If the small-scale shears are interpreted as features such as gravity waves and the large-scale shears as planetary-scale waves such as tide, this would imply that the large-scale signature is virtually always present and the strongest shear in the lower thermosphere is only short in scale when the gravity wave or other feature exceeds the amplitude of that large-scale pattern.
Exploring the possible tidal or other global-scale wave origin of the large-scale shears, Figure 3e and f show the clear downward progression in the altitude of the peak windshear with LT, which matches the downward propagation of the mean (primarily tidal) winds in this region. This is broadly similar to the tidal influence in Richardson number identified in lidar observations (e.g. Li et al., 2005; Yue et al., 2010). The meridional shears from 15 – 20° north were selected as the migrating diurnal tide is known to be clear in the meridional winds in this region (e.g., McLandress et al., 1996, Shepherd et al., 2012). The estimated downward progression rate of 36 km over 24 hours is consistent with the downward phase propagation of the migrating diurnal tide (e.g., McLandress et al., 1996; Akmaev et al., 1997), although additional information such as nighttime observations across this region would be needed to determine this definitively. Comparing panels e and f, the same downward phase progression is seen in the small-scale shears as the whole population, which would be consistent with the interpretation of these as associated with gravity waves, whose maximum wind shears tend to occur when they reinforce the larger-scale tidal wind pattern that exists in this region. The horizontal scale of low frequency gravity waves (periods of hours) have horizontal scales (>500 km) that can be observed by ICON limb sampling method, such as those identified by Hu et al. (2002).

Perhaps the most consistent pattern in Figure 4 is that the altitude at which the strongest individual shears are generally seen is just below the respective peak in the climatological winds (i.e., positive shears below a northward wind and vice versa). This is suggestive that these are
manifestations of the same underlying pattern, rather than the shears being organized by some other small-scale process. This is reinforced by the similarity between the short and long-length scale shears shown in Figure 3e and f. The high magnitude wind and the shears seen on individual orbits, which greatly exceed those of the climatological winds, may be the result of superposition of the dominant migrating tides with other waves, such as nonmigrating tides, planetary waves and larger-horizontal scale gravity waves that are apparent in limb observations. Nonetheless, the underlying pattern appears to be governed by the tides, at least at the latitudes examined here. As the amplitude of the tides increase so do the shears, up to the location of the maximum tidal wind amplitude, generally in the 100 – 120 km altitude region. Above this, the upward propagating tides begin to dissipate and the most common wind and shear patterns transition to being dominated by in situ generated tides, which tend to have much larger vertical wavelengths.

The comparison of the observed wind shears to those simulated by WACCM-X provides a useful comparison to a model dataset that contains realistically simulated large-scale waves (lower atmosphere forcing from a reanalysis), but which lacks resolved small-scale waves or other features below several hundred km horizontal scale. Liu (2016) demonstrated that the WACCM-X model produces far larger shears when run at a higher resolution. Thus, the underestimation of the shears in the lower-resolution model simulation used here, compared to those observed by MIGHTI, is likely a result of the model resolution (Figure 3a, b). The model does reproduce the observed symmetry in the wind shear direction, suggesting no preferred direction for these shears in the lower thermosphere. Figure 3c and d show a very different distribution of shear
lengths than those observed, whereby the observed increase in the occurrence rate of short horizontal scale wind shears is not reproduced in the model. This would again be consistent with an interpretation that these are indeed the result of spatially small structures such as gravity waves, and not the sampling provided by MIGHTI. The larger-scale wind shears, out to even 10,000 km great circle distance, are reproduced in the model again suggesting these are geophysical features, such as related to atmospheric tides or other planetary-scale waves that are known to be strong in this altitude region.

Acknowledgements

This analysis used version 04 of the Level 2.2 ICON-MIGHTI horizontal wind data, which are available from the ICON website (https://icon.ssl.berkeley.edu/Data) and NASA’s Space Physics Data Facility (https://cdaweb.gsfc.nasa.gov/pub/data/icon/). The WACCM-X model output used in this work is available from the National Center for Atmospheric Research’s Climate Data Gateway at https://doi.org/10.5065/rjgt-g951. ICON is supported by NASA’s Explorers Program through contracts NNG12FA45C and NNG12FA42I and NASA Grant 80NSSC2. The National Center for Atmospheric Research is sponsored by the National Science Foundation. The authors acknowledge the support from the International Space Science Institute (ISSI) through the International Team “An Exploration of the Valley Region in the Low Latitude Ionosphere: Response to Forcing from Below and Above and Relevance to Space Weather.”
References

Figure 1 – Daytime zonal winds observed with ICON MIGHTI on five successive orbits from March 20th, 2020. Values are shown as functions of altitude and local time. The latitude of the wind observations at 90 km altitude is shown in the bottom panel. The time at the middle of each dayside orbit segment in UTC is noted. Strong wind shears can be seen in the lower altitude region of each panel, with no obvious pattern repeating from one orbit to the next.
Figure 2 – Determination of the maximum wind shear and the horizontal scale of the direction of the wind shear. Panel a shows the daytime zonal wind profiles observed on the first orbit shown in Figure 1. The location of the maximum wind shear identified at each longitude is marked with diamonds. Panel b shows the maximum daytime zonal wind shears for the same orbit as panel a. The red and blue lines mark the portions of the orbit in which the shear is positive (becoming more eastwards with altitude) and negative, respectively.
Figure 3 – Histograms of the daytime wind shears observed by ICON MIGHTI and simulated by WACCM-X for days 1 – 90 of 2020. Panels a and b show the fraction of wind zonal and meridional shears with direction and amplitude. The color-coding indicates the observed wind shears from the whole dataset, and those associated with long horizontal scale and short horizontal scale constant wind shear directions, where 2000 km great circle separates long from short.
short. Panels c and d show the fraction of zonal and meridional wind shears with the great circle horizontal scale of constant wind shear direction. The color-coding shows indicates the whole dataset, and those where the wind shears are low or high in magnitude, where low refers to $<|15 \text{ m/s/km}|$ and high is $>|15 \text{ m/s/km}|$. Panels e and f show the altitude of the maximum meridional wind shear observed between 15 – 25°N latitude. The color-coding shows the local time of the observation. Panel e is for negative meridional wind shears and panel f is for the short horizontal scale negative meridional shears. All values have been normalized against the maximum for clarity.
Figure 4 – Altitude of the maximum wind shear throughout 2020. Each pair of panels follows panels e from Figure 3. Panels a and b show days 1 – 90. Panels d and e show days 91 – 180. Panels g and h show days 181 – 270. Panels j and k show days 271 – 360. Panels a, d, g and j show negative shears and panels b, e, h and k show positive shears. Panels c, f, l and l show the median meridional winds as a function of height throughout the year. The dotted line marks zero.