ED042-02 - Teaching Undergraduates to Build Spacecraft During The Covid-19 Lockdown

EDGAR A BERING¹, Donald L Hampton², Nicole Molders³, Denise Thorsen³, Shuhab Khan¹, Mequanint Moges¹, Elizabeth Hernandez¹, Alexandra Briggs Ulinsky¹, Ana Gabriela S.S.R. Pessoa¹, Rachel Gamblin¹, Megan F Pina¹, and Bryan Gunawan¹

¹University of Houston
²University of Alaska
³University of Alaska, Fairbanks

November 23, 2022

Abstract

The Undergraduate Student Instrumentation Project (USIP) was a NASA program to engage undergraduate students in rigorous scientific research, for the purposes of innovation and developing the next generation of professionals in space research. The program is student led and executed from initial ideation of research objectives to the design and deployment of scientific payloads. The University of Houston was selected twice to participate in the USIP programs. The first program (USIP_UH I) ran from 2013 to 2016. USIP_UH II ran from 2016 to 2019. USIP_UH I (USIP_UH II) at the University of Houston was composed of eight (seven) research teams developing six (seven), distinct, balloon-based scientific instruments. This project was a for-credit course two years in duration. The program has been so successful in terms of improved student career outcomes the University has decided to continue the project with purely local funding. The pandemic has produced a substantial instructional challenge since this project is a lab class! The virtual classroom that we designed to meet this need provides tools for ongoing collaboration, revisions, storage, project planning, systems engineering, and a tool to request immediate feedback from faculty and fellow researchers. Additionally, the classroom provides an ongoing place to store data from different students for many years. New students can use this continuity in a consistent and secure way. We also provided tools for conferencing and communication. A combination of several tools were selected and customized to meet this need. These tools include Google Classroom, Microsoft Teams, Slack, Git, Groupme, and Zoom.
Teaching Undergraduates to Build Spacecraft During The Covid-19 Lockdown

University of Houston
University of Alaska, Fairbanks

PRESENTED AT:

AGU FALL MEETING
Online Everywhere | 1–17 December 2020
THE USIP PROJECT (1)

Undergraduate Student Instrument Project (USIP)

What is USIP?

Undergraduate Student Instrument Project

What is USIP UH?

- Teaching Undergraduates to Build Spacecraft
 - Inquiry Based Learning
 - Project Based Learning
- Two Year Program
 - 9-12 credit hours
 - Becomes a thesis or senior project
 - Starts with a semester of introductory lectures
- Publishable outcomes
USIP UH Program Plan

Spring 1
- Lectures
- Research

Su, Fall 1
- Design
- Fabrication

Spring 2
- Test
- Fly

Demographics
WHO ARE THE STUDENTS?
Demographics

USIP I

USIP II

DEMOGRAPHICS

- 39 UH & 7 TAMU Completed 2012-2019, 23 Enrolled
- 12 different Majors
- Freshman, Sophomores, Juniors, and Seniors
- Ages range from 17 – 31
- 12 different ethnicities
- 10 different languages
PEDAGOGICAL APPROACH (2)

How Do We Teach This Project?

Pedagogy

- 5E Instructional model places the student at the center of knowledge building
- Instructors facilitate interaction with content and guide the inquiry process
- Research based, sequential framework provides a conceptual-change model of learning
- 5E instructional model improves student engagement and instructional effectiveness
- Active learning is one of the most significant contributors to college student achievement and retention
Learning Strategy - University Level 5E

- **Engage:**
 - Elicit student interest and gauge prior knowledge through the examination of a particular event or problem, sparking inquiry that directly connects to the desired learning objectives
 - **VERY** introductory lectures
 - Engage the students in excitement of the Earth and sky around us.

- **Explore:**
 - Learners assess the validity of their prior thoughts on the topic and engage in hands-on activities where they can advance their understanding and further investigate problems of interest.
 - Students begin by researching topics in Space Physics, Aeronomy, Atmospheric Science, Geoscience and Astrobiology. Select a Question of Interest to them

Learning Strategy - University Level 5E

- **Explain:**
 - Full explanations of the scientific content, where students connect concepts through the acquisition of associated vocabulary and science and engineering practices
 - Form Teams. Design Experiment to Address Question

- **Extend:**
 - Students are challenged to apply concepts learned to new or unique scientific problems. Instruction focuses on presenting students with a novel challenge that requires them to apply and extend the concepts mastered in prior phases
 - Build. Test. Calibrate. Fly
Learning Strategy - University Level 5E

- Evaluate:
 - Instructor assesses student-provided evidence of learning and project work product
 - Instructor feedback guides students to provide clear justification for their findings through open-ended questioning and self-assessment
 - Data Analysis, Student Paper Competition, SciTech, Fall AGU

Team-Based

- All students belong to 2-3 teams
 - System Teams (e.g. Telemetry)
 - Science Team
- Team Leaders are all Undergraduates
- Project Leaders are also Undergraduates
- Four person teams are optimum
TOOLS AND METHODS (3)

How Do We Organize the Work?

USIP project

The precondition: An ongoing place to store data from different students for many years and that can be used by new students in a consistent and secure way. Additionally, the platform should provide tools for ongoing collaboration, revisions, storage and a tool to request immediate feedback from fellow researchers.

Google Class was used to meet this need
Tools Used For USIP Project.

Google Class
A space where resources, students and announcements can be contained for easy access.
Equipped with Calendar, Drive, and Collaboration tools.

Smartsheet
Create Gantt Charts and other tools you can share with all your team members across the world.

Collaboration Tools
Google Docs, Slides, Forms, Sheets, Drawing and Smartsheet help make working in teams convenient. OpenOffice and MS Office are also used in this project.

MS Teams
Planned use- One stop service for online teaching, presentations, team meetings and recording.

Google Drive
Unlimited storage of data for student use on this project. Stores data in one place and share. Two Drive accounts are synced. Project is also synced with the Physics Server, Ra.

USIP Google Classroom

How it is used in the project
Google Classroom is used an access point for all the tools being used in the classroom.

The goal for the USIP group was to have one place that the students could visit and access all the tools being used in the project easily.
Classroom Structure

Work is separated into topics for easy organization and features the Class lectures, Announcements/ Resources, Assignments and the Wiki (which is the main collaboration point of the project. It contains student Microblogs, Gantt Charts, Personal Folders and Data File Structures)

Classroom Structure, II
Curriculum Module

- Contains a 12 week lesson unit plan for the classroom to prepare for
- Planning, Launch/Recovery
- Experiment ideas
- List of supplies
CAPTURE THE EXPERIENCE (4)
Share the Joy

Science
WHAT WERE WE TRYING TO STUDY

VLF Data

Figure 1. Snippet of data from VLF flight 1, showing a faint nose whistler. Time is misaligned. ADBT is shown.
Airglow Data

Image of near-IR (N2) auroral activity on March 22, 2017.

Spectroscope
Star Tracker

Ozonesonde
Field Experiences

UP, UP AND AWAY

USIP | Alaska Flight Path (typical)
ASSESS THE OUTCOME (5)

Celebrate Achievement

Outcome Assessment

THE JOY OF ACHIEVEMENT

Outcomes

- Glorious fun!
 - Intensely rewarding for me
- Intense student engagement
- Highly effective in teaching science and engineering
- Overall student performance improves
- Many Honors Graduates
Outcome Assessment

• End of Project Essays
• 26 talks, 23 posters
• Three of the students' papers took 1st through 3rd place at the recent AIAA Region IV Student Paper Competition
• There were/will be USIP sessions at Fall 2017, 2018, 2019, 2020 AGU
• Three students presented invited papers at Fall AGU
• The students launched 1 balloon from Nebraska in conjunction with the eclipse
AUTHOR INFORMATION

University of Houston
ABSTRACT

The Undergraduate Student Instrumentation Project (USIP) was a NASA program to engage undergraduate students in rigorous scientific research, for the purposes of innovation and developing the next generation of professionals in space research. The program is student led and executed from initial ideation of research objectives to the design and deployment of scientific payloads. The University of Houston was selected twice to participate in the USIP programs. The first program (USIP_UH I) ran from 2013 to 2016. USIP_UH II ran from 2016 to 2019. USIP_UH I (USIP_UH II) at the University of Houston was composed of eight (seven) research teams developing six (seven), distinct, balloon-based scientific instruments. This project was a for-credit course two years in duration. The program has been so successful in terms of improved student career outcomes the University has decided to continue the project with purely local funding. The pandemic has produced a substantial instructional challenge since this project is a lab class! The virtual classroom that we designed to meet this need provides tools for ongoing collaboration, revisions, storage, project planning, systems engineering, and a tool to request immediate feedback from faculty and fellow researchers. Additionally, the classroom provides an ongoing place to store data from different students for many years. New students can use this continuity in a consistent and secure way. We also provided tools for conferencing and communication. A combination of several tools were selected and customized to meet this need. These tools include Google Classroom, Microsoft Teams, Slack, Git, Groupme, and Zoom.