Clumped-isotope constraint on upper-tropospheric cooling during the Last Glacial Maximum

Asmita Banerjee1, Laurence Y Yeung1, Lee Thomas Murray2, Xin Tie2, Jessica E. Tierney3, and Allegra N. LeGrande4

1Rice University
2University of Rochester
3University of Arizona
4NASA Goddard Institute for Space Studies and Center for Climate Systems Research

November 22, 2022

Abstract

Ice cores and other paleotemperature proxies, together with general circulation models, have provided information on past surface temperatures and the atmosphere’s composition in different climates. Little is known, however, about past temperatures at high altitudes, which play a crucial role in Earth’s radiative energy budget. Paleoclimate records at high-altitude sites are sparse, and the few that are available show poor agreement with climate model predictions. These disagreements could be due to insufficient spatial coverage, spatiotemporal biases, or model physics; new records that can mitigate or avoid these uncertainties are needed. Here, we constrain the change in upper-tropospheric temperature at the global scale during the Last Glacial Maximum (LGM) using the clumped-isotope composition of molecular oxygen trapped in polar ice cores. Aided by global three-dimensional chemical transport modeling, we exploit the intrinsic temperature sensitivity of the clumped-isotope composition of atmospheric oxygen to infer that the upper troposphere (5 – 15 km altitude, effective mean 10 – 11 km) was 4 – 10°C cooler during the LGM than during the late preindustrial Holocene. These results support a minor or negligible steepening of atmospheric lapse rates during the LGM, which is consistent with a range of climate model simulations. Proxy-model disagreements with other high-altitude records may stem from inaccuracies in regional hydroclimate simulation, possibly related to land-atmosphere feedbacks.

Hosted file

Clumped-isotope constraint on upper-tropospheric cooling during the Last Glacial Maximum

Asmita Banerjee1,*, Laurence Y. Yeung1,2,*, Lee T. Murray3, Xin Tie3, Jessica E. Tierney4, and Allegra N. Legrande5

1Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, USA
2Department of Chemistry, Rice University, Houston, TX, USA
3Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY, USA
4Department of Geosciences, University of Arizona, Tucson, AZ, USA
5NASA Goddard Institute for Space Studies and Center for Climate Systems Research, Columbia University, New York, USA

Corresponding author: Asmita Banerjee (Asmita.Banerjee@rice.edu), Laurence Y. Yeung (lyeung@rice.edu)

Key Points:
- Measurements of O2 clumped isotopes in polar ice cores are compared to predictions from 3-dimensional chemical transport modeling
- Measured and modeled change in O2 clumped isotope values between the Last Glacial Maximum and Preindustrial agree within uncertainty
- Clumped-isotope results imply a minor lapse-rate steepening at the Last Glacial Maximum relative to the Preindustrial
Abstract

Ice cores and other paleotemperature proxies, together with general circulation models, have provided information on past surface temperatures and the atmosphere’s composition in different climates. Little is known, however, about past temperatures at high altitudes, which play a crucial role in Earth’s radiative energy budget. Paleoclimate records at high-altitude sites are sparse, and the few that are available show poor agreement with climate model predictions. These disagreements could be due to insufficient spatial coverage, spatiotemporal biases, or model physics; new records that can mitigate or avoid these uncertainties are needed. Here, we constrain the change in upper-tropospheric temperature at the global scale during the Last Glacial Maximum (LGM) using the clumped-isotope composition of molecular oxygen trapped in polar ice cores. Aided by global three-dimensional chemical transport modeling, we exploit the intrinsic temperature sensitivity of the clumped-isotope composition of atmospheric oxygen to infer that the upper troposphere (5 – 15 km altitude, effective mean 10 – 11 km) was 4 – 10°C cooler during the LGM than during the late preindustrial Holocene. These results support a minor or negligible steepening of atmospheric lapse rates during the LGM, which is consistent with a range of climate model simulations. Proxy-model disagreements with other high-altitude records may stem from inaccuracies in regional hydroclimate simulation, possibly related to land-atmosphere feedbacks.

Plain Language Summary

Atmospheric temperatures at high altitudes determine the fate of montane glaciers and the energy balance of the planet. They change with Earth’s climate, but our knowledge of this relationship is poor: the few available temperature records for high-altitude cooling at the most recent ice age, which are limited to the tropics, disagree with model predictions for unknown reasons. Here we report a global-scale constraint for high-altitude temperature, applied to the last ice age, which yields results consistent with global climate model predictions. This new proxy—based on the isotopic variants of molecular oxygen trapped in polar ice cores—can be applied deeper in the past to understand the relationship between surface and high-altitude temperatures in different climates.
1 Introduction

Atmospheric lapse rates affect the emission of longwave radiation to space and thus the climate system’s response to changes in greenhouse gas concentrations (Bony et al., 2006; Soden & Held, 2006). Accurately predicting how they and other atmospheric properties change when subject to different climate forcing, however, remains a challenge (Bony et al., 2006, 2015; Shepherd, 2014; Sherwood et al., 2014). Simulated lapse-rate responses to climate forcing differ substantially among models and they are, on average, a factor of two smaller than what proxy-based reconstructions imply for the most recent glacial period in the tropics (Farrera et al., 1999; Porter, 2000; Kageyama et al., 2005; Soden & Held, 2006; Loomis et al., 2017). However, the high-altitude paleoclimate record is sparse and biased toward terrestrial signals; it yields few constraints on how large-scale atmospheric temperature structure changes with surface climate. A global-scale high-altitude paleotemperature proxy, unaffected by location-specific climatology, could benchmark climate model performance at high altitudes for past climates and diagnose any shortcomings in model physics.

The Last Glacial Maximum (LGM, 21-18 ka) has been used extensively as a reference climate state for paleoclimate modeling and to constrain climate sensitivity due to its relatively recent occurrence, well-preserved proxy records, and radically different climate forcings (Braconnot et al., 2012; Otto-Bliesner et al., 2006; Schmittner et al., 2011; Kageyama et al., 2017; Tierney et al., 2020; Kageyama et al., 2021). Reduced greenhouse-gas concentrations and the presence of large ice sheets (Anklin et al., 1997; Monnin et al., 2001; Valdes, 2005; Spahni et al., 2005; Loulergue et al., 2008; Parrenin et al., 2013) led to a global-scale cooling of surface air temperatures (SATs). Estimates using model-data syntheses suggest that global-mean SATs were between 4°C and 6°C cooler than the late preindustrial Holocene (Annan & Hargreaves, 2013; Tierney et al., 2020), while noble gas-based low- and mid-latitude temperature estimates suggest 6°C of cooling on land (Seltzer et al., 2021). High-altitude cooling during the LGM, however, is less well known. For example, many paleotemperature records from polar ice cores reflect climate at high elevations, but weak constraints on ice-sheet elevation histories complicate their utility as high-altitude records. Tropical ice cores, glacier equilibrium line altitudes, pollen assemblages and organic geochemical proxies preserved in high-altitude lake sediments have provided the primary paleoclimatic constraints (Thompson et al., 1995, 1998; Farrera et al., 1999; Porter, 2000; Thompson, 2000; Thompson et al., 2003; Stansell et al., 2007). Proxy based estimates typically report a ~1°C/km steepened lapse rate in the tropics with poorly characterized regional-scale variability (Farrera et al., 1999; Loomis et al., 2017). General circulation models, however, consistently simulate a weaker lapse rate steepening of 0.2 – 0.6°C/km in the tropics (Kageyama et al., 2005; Loomis et al., 2017) and a much weakened lapse rate over the Northern Hemisphere polar ice sheets (Abe-Ouchi et al., 2007). This proxy-model disparity prompts questions as to whether models are accurately capturing global-scale behavior at high altitudes, or whether disagreements arise from shortcomings in regional-scale climate prediction.

Clumped isotopes of oxygen (i.e., the proportional abundance of 18O/16O in O$_2$, reported as a Δ_{18} value; see Methods) can provide novel constraints on past global-mean free-tropospheric temperatures (Yeung et al., 2016, 2021). In the atmosphere, $O(^2P) + O_2$ isotope-exchange reactions enrich 18O/16O in O$_2$ relative to what chance alone would dictate, elevating its Δ_{18} value (Wang et al., 2004; Yeung et al., 2012, 2014). These enrichments increase as temperatures decrease: at photochemical steady state, the Δ_{18} temperature sensitivity can be as high as $+0.025\%$ per
°C cooling depending on local temperature and pressure. Moreover, the mean altitude where oxygen isotope-exchange reactions occur is 10 ± 5 km, with a mean altitude in the tropics that is ~2 km higher than in the extratropics. Thus, the majority of tropospheric isotope-exchange reactions occur in the upper troposphere, and the Δ_{36} value of tropospheric O\textsubscript{2} should vary inversely with the temperatures there; efficient stirring of the troposphere on annual timescales largely removes local-scale effects (Yeung et al., 2021). However, the tropospheric Δ_{36} value is also sensitive to the tropospheric O\textsubscript{3} burden—which controls mean tropospheric O(\textsubscript{2}P) concentrations—and inputs of high-Δ_{36} stratospheric O\textsubscript{2} on sub-decadal timescales. For global temperature changes exceeding several degrees Celsius, upper-tropospheric temperature changes may dominate over these other terms in the global Δ_{36} budget (Yeung et al., 2016). Consequently, the Δ_{36} value of O\textsubscript{2} is expected to vary with global climate. Here, we report new clumped-isotope measurements of O\textsubscript{2} trapped in polar ice cores and argue that they constrain the upper-tropospheric temperature change between the LGM and the late preindustrial Holocene (PI). We use the Ice Age Chemistry and Proxies (ICECAP) modeling framework (Murray et al., 2014; Murray et al., 2021) to estimate tropospheric O\textsubscript{3} changes and infer climate-driven changes in atmospheric temperature structure.

2 Materials and Methods

2.1 O\textsubscript{2} clumped-isotope measurements. Ice core samples drilled from the Greenland Ice Sheet Project (GISP2-D core) and West Antarctic Ice Sheet Divide Ice Core (WDC06A core) were used for this study. The depths for the WDC06A and GISP2-D ice cores span 2450 – 2556 m and 1900 – 1962 m respectively, corresponding to gas ages of 18 – 21ka (Rasmussen et al., 2014; Seierstad et al., 2014; Buizert et al., 2015; Sigl et al., 2016). For every analysis, 90 – 100g of ice core sample was used, with an average O\textsubscript{2} yield of ~70 mbar using previously described methods (Severinghaus et al., 2003; Yeung et al., 2019). Collected samples were purified cryogenically using a gas chromatograph (GC) to remove nitrogen, argon and other trace gases. Subsequently, the O\textsubscript{2} isotopologue ratios were measured using a high-resolution Nu Instruments Perspective IS isotope ratio mass spectrometer (Yeung et al., 2016). Clumped isotope compositions of O\textsubscript{2} are described by a Δ_{36} value, reported against the stochastic (random) distribution of isotopes within that sample:

\[\Delta_{36} = \left(\frac{R_{\text{measured}}}{{R_{\text{stochastic}}^{36}}} - 1 \right) \]

(1)

where

\[{R_{\text{stochastic}}^{36}} = \frac{[^{18}O][^{18}O]}{[^{16}O][^{16}O]} = (^{18}R)^2 \]

(2)

Reported Δ_{36} values are calibrated against low-pressure (<2 mbar) photochemical standards generated at a range of temperatures (~63°C to 25°C) and also high temperature standards (800°C) generated by thermal decomposition of barium peroxide (Yeung et al., 2014). We note that at low pressures, the $^{18}\text{O}^{18}\text{O}$ enrichment resembles isotopic equilibrium, whereas at higher pressures, the $^{18}\text{O}^{18}\text{O}$ enrichment is smaller due to a titration of heavy O\textsubscript{2} isotopologues into O\textsubscript{3} (Yeung et al., 2021). This pressure effect influences the computation of the atmospheric Δ_{36} values in the
model described below, but does not impact the comparison of Δ_{36} values reported herein with prior published values, as the calibration methods are identical.

2.2 Data correction and rejection criteria

We measured a total of 102 ice-core samples ($n = 53$ for GISP, $n = 49$ for WDC) but exclude 27 of those samples from our results. The reported dataset has a spread greater than the reported difference between the LGM-PI and LGM-PD. The spread in the reported data implicitly includes both instrumental uncertainty (i.e., shot noise + Johnson noise, leading to a combined uncertainty of $\pm0.03\%$) and sample-processing artifacts. Our data filtering method to account for sample processing-related uncertainty is primarily based on the raw δ^{18}O values of O$_3$ measured previously (Severinghaus et al., 2009; Severinghaus, 2015) and is explained in Text S1. Irrespective of the data rejection criteria applied, however, both unfiltered ($n = 102$) and filtered ($n = 75$) datasets have the same mean Δ_{36} value and confidence intervals (Figure S1). Consequently, the results do not depend critically on the data rejection criteria used.

2.3 Atmospheric chemistry modeling

Atmospheric chemistry simulations for online Δ_{36} calculations were performed using GEOS-Chem (version 12.9.0; http://www.geos-chem.org), a three-dimensional global chemical transport model with the unified chemical mechanism [UCX; (Eastham et al., 2014)] driven by the meteorology of the Goddard Institute of Space Science E2.1 model archived at 2° latitude by 2.5° longitude spatial and 3-h (3-D) and hourly (2-D) temporal resolution, which contains 40 vertical layers extending from the surface to about 60 km (about 28 in the tropical troposphere) [GISS-E2.1; (Rind et al., 1988; Schmidt et al., 2006; Murray et al., 2014; Kelley et al., 2020; Murray et al., 2021)]. The simulations reported here degrade the GISS-E2.1 spatial resolution to 4° × 5° (latitude × longitude) for computational expediency.

2.3.1 Updates to halogen chemistry and its effect on ozone concentrations

An updated set of heterogeneous halogen mechanisms were included in ICECAP for an updated tropospheric bromine chemistry and an extension of stratospheric chlorine mechanism to the troposphere (Eastham et al., 2014; Schmidt et al., 2016). Iodine and a more comprehensive chlorine-bromine-iodine mechanism were then applied (Sherwen et al., 2016) as well as the oxidation of dissolved SO$_2$ by HOBr (Chen et al., 2017). Recent updates to halogen chemistry in ICECAP include chlorine mobilization of sea salt aerosol from HCl acid displacement and other heterogeneous processes, and improved aerosol and cloud chemistry (Wang et al., 2019, 2021).

We note that tropospheric ozone concentrations can be affected by halogen species in the troposphere through reactions with NO$_3$ (NO$_2$ + NO) and its reservoir species. For example, ClINO$_2$ formed through Cl$^-$ + N$_2$O$_5$ during the night can be photolyzed during the daytime to produce NO$_2$ to increase the ozone concentration (Osthoff et al., 2008; Roberts et al., 2008). Fast cycling between halogen radicals and their reservoir species enhances the conversion from NO$_3$ to HNO$_3$ which leads to catalytic ozone loss (von Glasow et al., 2004; Yang et al., 2005; Sherwen et al., 2016). Furthermore, other major oxidants like dimethylsulfide and volatile organic compounds that influence ozone concentration can be lost through reaction with Cl, Br and I atoms (Atkinson, 1997; Saiz-Lopez & Glasow, 2012; Horowitz et al., 2017).

2.3.2 Meteorologies used in GEOS-Chem

The climate in GISS-E2.1 used in this study is run in atmosphere-only mode and forced by ice core estimates of greenhouse gas concentrations, sea ice, topography, sea surface temperature and orbital parameters as described previously (Murray et al., 2014). The LPJ-LMfire model is...
used to represent an upper limit on the fire activity of the past (“high-fire” scenario) and yields fire emissions 3-4 times higher than those for the present day (Pfeiffer et al., 2013; Murray et al., 2014; Kaplan et al., 2016). The lower limit on fire activity (“low-fire” scenario) is based on the charcoal accumulation rates from the Global Charcoal Database and has been described in Murray et al., (2014).

In addition to using physically consistent LGM sea-surface temperature (SST) climatologies generated by GISS-E2.1—from the fully-coupled online ocean of the Paleoclimate Model Intercomparison Project-3 (PMIP3) experiment (Braconnot et al., 2012)—we also performed an alternative simulation in atmosphere-only mode, using monthly SST climatologies derived from an updated version of the LGM data assimilation product of Tierney et al., (2020). The original LGM data assimilation product in Tierney et al., (2020) computed only annual mean quantities of SST, so for the purposes of this manuscript we re-ran the data assimilation to output monthly quantities. The underlying proxy data, forward models, and data assimilation settings were identical to those used in Tierney et al., (2020); however, a wider range of model priors were used for both the LGM and Late Holocene (LH) assimilations following Osman et al., (2021). The model priors for the LGM timeslice included the three experiments used in Tierney et al., (2020) (iCESM1.2-21ka, iCESM1.3-21ka, iCESM-18ka) plus an additional iCESM1.2-16ka experiment. The model priors for the LH timeslice include the three experiments used in Tierney et al., (2020) (iCESM1.2-PI, iCESM1.3-PI, iCESM-3ka) plus an iCESM1.2-PI experiment with prognostic phenology and the iCESM1.2 Last Millennium Ensemble with prognostic phenology. The posterior LGM data assimilation has a global mean surface temperature (GMST) of 7.4°C, which is nearly identical to the GMST of the original LGM data assimilation in Tierney et al., (2020) (7.5°C). The posterior LH data assimilation, however, has a GMST of 12.8°C, which is 0.8°C colder than in Tierney et al., (2020) (13.6°C). The colder LH posterior is a consequence of including priors with prognostic phenology in the land model (which have a colder GMST), rather than only including simulations with a prescribed phenology, as was done in Tierney et al., (2020). The LH proxies apparently favor a colder solution, a finding supported by the rank histogram analysis in Extended Data Figure 2 of Tierney et al., (2020), which shows that more proxies lie below the prior (i.e. are colder) than above it. With a cooler LH GMST, the magnitude of cooling in this updated version of the LGM data assimilation is -5.4°C. This updated version of the LGM data assimilation, _lgmDA version 2.0_ (Tierney & Osman, 2021), is publicly available at _https://doi.org/10.5281/zenodo.5171432_.

2.3.3 Online Δ36 calculation schemes

Similar to previous work (Yeung et al., 2021), two online Δ36 calculation schemes (pressure-independent and pressure-dependent) were implemented in GEOS-Chem to assess the sensitivity of the model results to Δ36 parameterization. In the pressure-independent scheme, atmospheric Δ36 values trend toward isotopic equilibrium according to the local kinetics of oxygen isotope exchange. In the pressure-dependent scheme, Δ36 approaches an isotopic steady state governed by local temperature and pressure, which varies according to the relative rates of isotope exchange and O$_3$ isotopologue formation. In both schemes, atomic oxygen ([O3(P)]) concentration and local temperature are the primary drivers of the instantaneous rates of isotope exchange. The pressure-dependent scheme reproduces modern observations quantitatively across latitudes, years, and seasons (Yeung et al., 2021), so those results are reported in the main text. The results of the pressure-independent calculation of Δ36 values are shown in Tables S1 and S2; the simulated Δ36 differences between the time periods of interest are
nearly identical, despite the absolute magnitude of Δ^{36} values being different. The choice of Δ^{36} calculation scheme does not affect the interpretations.

2.3.4 Estimating the spatial distribution and mean effective isotope re-ordering altitude using outputs from GEOS-Chem simulations. The isotope exchange rate in the troposphere, E_{trop}, can be determined using the following equation described previously (Yeung et al., 2021):

$$E_{\text{trop}} = \frac{\Sigma_{\text{trop grid boxes}} k_{\text{exch}}(T)[O\left(^3P\right)][O_2]}{\Sigma_{\text{trop grid boxes}} m_{\text{box}}^n \rho_{\text{box}}^n} \times V_{\text{trop}}$$

(3)

where $k_{\text{exch}}(T)[O\left(^3P\right)][O_2]$ is the local rate of isotope exchange in units of concentration per unit time; m_{box} is the mass of air used to normalize for the variable size of grid boxes, and V_{trop} is the volume of the troposphere, ρ_{box} is the air density of each grid box. The exponent n is used to acknowledge factors that affect the progression of Δ^{36} toward steady state; it reflects the balance between the residence time of air parcels within grid boxes (which drives $n \rightarrow 1$) and the efficiency with which air parcels are isotopically reordered within each box (which drives $n \rightarrow -1$). In general, this balance varies with climate and atmospheric chemistry, and ranges from -0.6 to -0.7 for the LGM simulations reported here.

3 Ice core measurements and atmospheric chemistry modeling results

3.1 Ice-core measurements. LGM-aged oxygen from the West Antarctic Ice Sheet Divide (WDC06A core) (Buizert et al., 2015) and Greenland Ice Sheet Drilling Project (GISP2-D core) (Seierstad et al., 2014) ice cores has a mean Δ^{36} value of $2.10 \pm 0.06\%o$ (1σ, $n = 32$) and $2.09 \pm 0.04\%o$ (1σ, $n = 43$), respectively (Figure 1). While the time-dependent variability of these values exceeds that expected from instrumental uncertainty and thus may contain additional paleoatmospheric information (see Text S1), we focus here on the longer-term mean LGM state. Bootstrap resampling of the LGM data from both cores yields a mean LGM tropospheric Δ^{36} value of 2.10 ± 0.01 (95% confidence interval, CI) with no statistically significant difference between the two cores ($p = 0.31$) (See Section 2.2, Figure S1). This mean LGM Δ^{36} value is higher than PI and present-day (PD) values by $0.06 \pm 0.01\%o$ and $0.09 \pm 0.02\%o$, respectively (95% CI; Figure 1) (Yeung et al., 2019).

If temperature were the only control on tropospheric Δ^{36} values, the shift in mean value would imply that upper-tropospheric temperatures during the LGM were $5 \pm 1^\circ$C cooler than the PI, on average, because the sensitivity of steady-state Δ^{36} values to temperature is $-0.013 \%/^\circ$C in the upper troposphere (i.e., at pressures ranging from 250 – 450 mbar) (Figure 2). However, changes in atmospheric O_3, its spatial distribution, and other physical processes may alter this estimate by changing the relative importance of tropospheric and stratospheric influences on the tropospheric Δ^{36} value.

3.2 Atmospheric modeling results. To constrain potential changes in tropospheric O_3 since the LGM, we simulated the atmospheric chemistry of the LGM, PI, and PD using the ICECAP modeling framework. LGM model results are referred to as LGM-GISS and LGM-DA, corresponding to the meteorologies arising from fully coupled runs of GISS-E2.1 and those from atmosphere-only runs of GISS-E2.1 with prescribed monthly SSTs, respectively.
Importantly, the two meteorologies differ in their LGM cooling: the mean SAT cooling is 3.9°C (LGM-GISS) and 4.9°C (LGM-DA) compared to the PI, with a mean SAT cooling of 2.5°C and 3.7°C in the tropics (30°N – 30°S), respectively (Figure S2). The mean upper-tropospheric cooling between 10 km and 11 km altitude is 4.0–4.3°C and 6.0–6.5°C in the tropics, respectively (Figure 3).

The atmospheric chemistry results are shown in Table 1. From the LGM to the PI, the modeled global tropospheric O$_3$ burden increases by 5–8% and 12–18% for the high- and low-fire scenarios, respectively (Table S2). The sign of the modeled O$_3$ change is consistent with earlier studies; however, the magnitude is generally smaller than that found in all previous simulations (i.e., 17 – 30%) (Thompson et al., 1993; Martinerie et al., 1995; Valdes, 2005; Kaplan et al., 2006; Murray et al., 2014) except the most recent estimates of tropospheric O$_3$ at the LGM (Wang et al., 2020). The reduced magnitude of the tropospheric O$_3$ change in the simulations reported here is attributed largely to the incorporation of more comprehensive halogen chemistry in GEOS-Chem, the atmospheric chemistry module of ICECAP (see Methods) (Sherwen et al., 2016; Wang et al., 2019).

Analysis of the modeled spatial patterns of O(3P) + O$_2$ isotope exchange reveals that the effective mean altitude recorded by the Δ^{36} tracer is ~11 km in all scenarios reported here (Table 1, Figure S3), with a slight bias toward the tropical upper troposphere (Figure S3). This effective mean altitude for the present day is 1 km higher than previously found using the Modern Era Retrospective Reanalysis-2 (MERRA2) meteorology and GEOS-Chem (Yeung et al., 2021). Similar to the calculation of Δ^{36} values, this slight difference in spatial patterns of isotope exchange between GISS-E2.1 and MERRA2 meteorologies is mitigated when comparing within a model framework due to cancellation of errors. The latitudinal pattern for all scenarios (roughly 49% tropical, 43% midlatitude, 8% polar) largely resembles that of Earth’s surface area (47% tropical, 40% midlatitude, and 13% polar).

The simulated global-mean surface Δ^{36} values (i.e., $\Delta^{36}_{\text{surf}}$; Table 1) are slightly higher than the measurements, but the modeled changes in surface Δ^{36} values are similar for both LGM meteorologies (Figure 4). Specifically, the modeled LGM-to-PI change ranges from −0.05‰ to −0.08‰, while the modeled PI-to-PD change is −0.04‰ and −0.06‰ for high- and low-fire scenarios, respectively (Table S2 and Figure 4). Modeled variations in global-mean surface Δ^{36} values benefit from a cancellation of systematic errors (Yeung et al., 2021), resulting in higher expected accuracy for changes in Δ^{36} values between LGM, PI, and PD scenarios. The high-fire emissions scenarios yield modeled Δ^{36} changes in better agreement with those measured in ice cores; low-fire model scenarios yield larger Δ^{36} changes, with pronounced disagreements with observations when comparing changes against the PD. Moreover, the LGM-DA simulations show better agreement with observations than LGM-GISS simulations when compared to the PI; the former have tropospheric temperatures that are ~1°C cooler and Δ^{36} values that are ~0.01‰ higher. The modeled LGM-to-PI changes in Δ^{36} value are, in all cases, associated with a colder free troposphere, a smaller tropospheric O$_3$ burden during the LGM, and changes in stratosphere-troposphere exchange.
4 Discussion

4.1 Tropospheric Δ_{36} values are sensitive to global climate and atmospheric chemistry. To attribute changes in the tropospheric Δ_{36} value to upper-tropospheric temperature, tropospheric O_3, and stratosphere-troposphere exchange, we use a two-box model approach described by the equation (Yeung et al., 2021):

$$\Delta_{36,\text{trop}} \approx \left(\frac{E_{\text{trop}}}{F_{\text{ST}}+E_{\text{trop}}}\right)\Delta_{36,1} + \left(\frac{F_{\text{ST}}}{F_{\text{ST}}+E_{\text{trop}}}\right)\Delta_{36,\text{strat}}$$

(4)

Here, $\Delta_{36,\text{trop}}$ is equivalent to the global-mean surface Δ_{36} value, F_{ST} (mol O$_2$ yr$^{-1}$) is the stratosphere-to-troposphere transport (STT) flux of O$_2$, E_{trop} (mol O$_2$ yr$^{-1}$) is the effective rate of O(3P) + O$_2$ isotope exchange in the troposphere, $\Delta_{36,1}$ is the Δ_{36} value for isotope exchange occurring only in the troposphere, and $\Delta_{36,\text{strat}}$ is the Δ_{36} value for isotope exchange occurring only in the stratosphere. These last two terms represent endmember Δ_{36} values. The relative tropospheric and stratospheric contributions to the $\Delta_{36,\text{trop}}$ value are determined by the terms attendant to the $\Delta_{36,1}$ and $\Delta_{36,\text{strat}}$ values, respectively, in eq. 4. In practice, F_{ST} is inferred from model outputs corresponding to each of the other four quantities (see Methods). Examining the effects of changing these quantities individually allows one to attribute the importance of each variable ($\Delta_{36,1}$, $\Delta_{36,\text{strat}}$, or E_{trop} and F_{ST} together) to the overall change in $\Delta_{36,\text{trop}}$ value between scenarios.

The inferred values of each variable in eq. 4 can be found in Table 1. We find that the $\Delta_{36,1}$ decrease accounts for roughly half (46% – 65%) of the LGM-to-PI change in $\Delta_{36,\text{trop}}$ value in the model, with high-fire scenarios on the lower end of the range. The changing balance of E_{trop} and F_{ST} accounts for about one-third (26% – 45%) of the change in $\Delta_{36,\text{trop}}$ value, with high-fire scenarios constituting the upper part of the range. The $\Delta_{36,\text{strat}}$ increase, which arises from subtle changes in temperature and O$_3$ photochemistry near the tropopause, accounts for the remainder (6% – 13%), with high-fire scenarios constituting the upper part of the range. Therefore, while the cooling in the LGM simulations is consistent with the cooling implied by a simple interpretation of the observed tropospheric Δ_{36} change, the observed tropospheric Δ_{36} change likely has more complex climate-dependent origins.

4.2 Evaluating the effects of climate-dependent changes to the Δ_{36} proxy budget. Below, we discuss the potential climate-dependent changes to tropospheric O$_3$ chemistry, STT fluxes, the stratospheric $\Delta_{36,\text{strat}}$ signature, as well as the effective mean altitude of the Δ_{36} proxy, and their effects on a Δ_{36}-based upper-tropospheric cooling estimate. These estimated changes to the tropospheric Δ_{36} budget will then be used to estimate a conservative range for upper tropospheric cooling during the LGM using an energy balance approach.

4.2.1 Tropospheric O$_3$ burden. While no direct measurements of LGM tropospheric O$_3$ exist, lower atmospheric mixing ratios of CH$_4$ suggest that the LGM tropospheric O$_3$ burden was lower than during the PI (Murray et al., 2014). Indeed, a lower tropospheric O$_3$ burden is a robust feature of all LGM chemistry simulations to date (Thompson et al., 1993; Martinerie et al., 1995; Valdes, 2005; Kaplan et al., 2006; Murray et al., 2014; Wang et al., 2020), including this study and a model that is consistent with ice-core constraints offered by the 18O content of sulfate and nitrate (Alexander et al., 2002; Geng et al., 2017). The lower tropospheric O$_3$ burden at the LGM leads to a reduction in E_{trop} (Table 1), which results in a cold bias in the Δ_{36} proxy, i.e., a higher tropospheric Δ_{36} value compared to that driven by cooling alone.
4.2.2 Stratosphere-to-troposphere transport. The climate sensitivity of the STT flux of O\textsubscript{2} (i.e., \(F_{\text{ST}}\))—and thus its contribution to tropospheric \(\Delta Z_{\text{O}_3}\)—remains uncertain. General circulation models show that the Brewer-Dobson Circulation (BDC), which governs the STT flux, is sensitive to climate (Holton et al., 1995; Rind et al., 2001, 2009; Fu et al., 2015; Geng et al., 2017; Fu et al., 2020): some studies infer a strengthened BDC (Rind et al., 2001, 2009; Geng et al., 2017) while others infer a weakened BDC during the LGM (Fu et al., 2020; Wang et al., 2020). Estimates of the LGM-to-PI change in STT flux thus range from +20\% to −17\%. Changes in the STT flux of O\textsubscript{3} on this order are expected to have negligible effects (<1\%) on the tropospheric O\textsubscript{3} burden (Neu et al., 2014).

Based on the analysis of model derived outputs, the strengthened STT flux combined with a lower \(E_{\text{trop}}\) value in our LGM simulations contributes up to 0.026\‰ (i.e., a 2°C cold bias) to the LGM-to-PI change in \(\Delta Z_{\text{O}_3}\). If the BDC instead weakened by 10 – 20\% during the LGM (Fu et al., 2020; Wang et al., 2020), its change would mirror that expected for \(E_{\text{trop}}\), minimizing the proportional change in the flux terms of the tropospheric \(\Delta Z_{\text{O}_3}\) budget [i.e., \(E_{\text{trop}}/(E_{\text{trop}} + F_{\text{ST}})\) and \(F_{\text{ST}}/(E_{\text{trop}} + F_{\text{ST}})\) in eq. 4]. This latter scenario would result in \(\Delta Z_{\text{O}_3}\) (i.e., mostly the tropospheric temperature change) driving the change in \(\Delta Z_{\text{O}_3}\) value. Therefore, given high confidence for a reduction in \(E_{\text{trop}}\) at the LGM, the uncertainty in the STT flux of O\textsubscript{2} would likely yield a combined \((E_{\text{trop}} + F_{\text{ST}})\) cold bias in the \(\Delta Z_{\text{O}_3}\) proxy temperature of 0 – 2°C.

4.2.3. Stratospheric \(\Delta Z_{\text{O}_3}\) signature. The change in the stratospheric \(\Delta Z_{\text{O}_3}\) endmember signature (\(\Delta Z_{\text{O}_3,\text{strat}}\)) between the LGM and PI, arising from changes in stratospheric temperatures and O\textsubscript{3} concentrations, has a minor effect on the \(\Delta Z_{\text{O}_3}\) budget. The modeled LGM-to-PI change of −0.04\‰ in the \(\Delta Z_{\text{O}_3,\text{strat}}\) value translates to a <0.01\‰ effect on the \(\Delta Z_{\text{O}_3}\) value. Its uncertainty, while difficult to ascertain \textit{a priori}, is likely negligible compared to the uncertainties in the tropospheric O\textsubscript{3} burden and STT flux of O\textsubscript{2}.

4.2.4. Effective mean altitude of isotope exchange. The LGM and PI temperatures need to be compared at equivalent altitudes. Sea-level change, for example, lowers the sea-surface reference point at the LGM by ~130 m. In addition, the reduction in atmospheric water vapor during the LGM is expected to lower the height of the Hadley cell and tropopause (Schneider et al., 2010; Murray et al., 2014). These changes lower the mean altitude at which tropospheric oxygen-isotope exchange reactions occur, and thus result in a warm bias for the \(\Delta Z_{\text{O}_3}\) proxy temperature at the LGM. The minimum warm bias, from the sea-level change alone, can be estimated to be ~1°C using lapse rates ranging from 6.5°C/km (i.e., the modern mean) to 9.8°C/km (i.e., the dry adiabat). However, the effects of circulation changes—which would redistribute tropospheric O\textsubscript{3} to lower altitudes, on average, during the LGM—are not as straightforwardly estimated.

Some constraints on the effects can be obtained using an energy balance approach. We will first recast the change in effective altitude for isotope reordering (\(\Delta Z_{\text{eff}} < 0\) for lowering) as the sum of contributions from changes in spatial distribution of tropospheric ozone (\(\Delta Z_{\text{O}_3}\)), tropopause height (\(\Delta Z_{\text{TP}}\), which is linked to the lapse rate; see below), and sea level (\(\Delta Z_{\text{SL}}\)), i.e.,

\[
\Delta Z_{\text{eff}} = \Delta Z_{\text{O}_3} + \Delta Z_{\text{TP}} + \Delta Z_{\text{SL}}
\]

Comparison of the high-fire and low-fire scenarios in our atmospheric chemistry simulations reveals a consistent increase in the effective reordering altitude of 22 – 23 m for every 1\% decrease in the tropospheric O\textsubscript{3} burden (Table 2). This relationship for \(\Delta Z_{\text{O}_3}\) is that associated with biomass burning emissions, the largest uncertainty
in the past tropospheric \(\text{O}_3 \) budget. The LGM-DA simulation, which has a climate closer to that of the LGM data assimilation, yields \(\Delta Z_{\text{O}_3} = 0.2 \) km and 0.4 km for the high- and low-fire scenarios.

The value of \(\Delta Z_{\text{TP}} \) between the LGM and PI is determined by radiative and dynamical constraints, which yield a quantitative relationship between \(Z_{\text{TP}} \), surface temperature (\(T_s \)), the tropospheric longwave emission height (\(Z_e \)), and the lapse rate (\(\Gamma > 0 \), nominally 6.5°C/km) (Schneider et al., 2010; Thuburn & Craig, 2000):

\[
Z_{\text{TP}} \approx (1 - c) \frac{T_s}{\Gamma} + cZ_e
\]

(6)

Here, \(c = 2^{1/4} \approx 0.84 \). If \(T_s \) is known, one can determine \(Z_e \) by solving the one-dimensional energy balance for the atmospheric emission temperature (\(T_e \)) and then using \(\Gamma \) to determine \(Z_e \):

\[
\sigma T_e^4 = S(1 - \alpha)
\]

(7)

\[
Z_e = \frac{T_s - T_e}{\Gamma}
\]

(8)

In eq. 8, \(\alpha \) is the planetary albedo and \(S = 342 \) W m\(^{-2}\). This approach reproduces the \(\Delta Z_{\text{TP}} \) magnitudes in the GISS-E2.1 simulations when using \(\alpha = 0.30 \) for PI and PD, \(\alpha = 0.32 - 0.33 \) for the LGM (Trenberth et al., 2009; Köhler et al., 2010; Donohoe & Battisti, 2011; Sherwood et al., 2020). Together with the \(\Delta Z_{\text{O}_3} \) estimates outlined above and \(\Delta Z_{\text{st}} = -0.13 \) km for the LGM (Clark & Mix, 2002), eq. 5 yields a \(\Delta Z_{\text{eff}} \) lowering of several hundred meters for the LGM compared to the PI. Invoking a minor lapse-rate steepening consistent with the model meteorologies (\(\approx 0.1^\circ \text{C/km} \)) reproduces the 3D-model-based \(\Delta Z_{\text{TP}} \) and \(\Delta Z_{\text{eff}} \) estimates (Table 2). We note that these calculations do not consider the expected warming of the stratosphere at the LGM (Rind et al., 2009; Wang et al., 2020) which would tend to reduce the magnitude of \(\Delta Z_{\text{TP}} \) slightly. However, the magnitude of modeled \(\Delta Z_{\text{TP}} \) values is consistent with previous studies (Noda et al., 2018). These \(\Delta Z_{\text{eff}} \) estimates, from the 3D model and 1D energy balance, suggest that the change in effective mean altitude of isotope exchange at the LGM will yield a warm bias of several degrees Celsius, with a precise magnitude that depends on the assumed change in the global-mean lapse rate.

4.3 Estimating the upper-tropospheric cooling during the LGM. The LGM upper tropospheric cooling \((\Delta T_{10-11\text{km}} > 0) \) can be expressed in terms of the \(\Delta \text{O}_3 \) proxy cooling \((\Delta T_{\text{proxy}} > 0) \), the change in effective altitude for isotope reordering (Section 4.2.4), and the assumed LGM lapse rate:

\[
\Delta T_{10-11\text{km}} = \Delta T_{\text{proxy}} - \Delta Z_{\text{eff}} \times \Gamma
\]

(9)

Equations 5-9 can thus be used to constrain \(\Delta T_{10-11\text{km}} \) at the LGM. Because the LGM lapse rate is not known \textit{a priori}, we evaluate \(\Delta T_{10-11\text{km}} \) for \(\Gamma = 6.0 - 7.5^\circ \text{C/km} \), a plausible range based on previous studies (Loomis et al., 2017). We use the mean SAT of \(T_{s,\text{PI}} = 12.8 \pm 0.5^\circ \text{C} \) from the LGM reanalysis (Tierney & Osman, 2021). To bracket the predictions, we use \(\Delta Z_{\text{O}_3} \) of 0 – 0.4 km and \(\Delta T_{\text{proxy}} = 3 - 5^\circ \text{C} \), which reflects range of cold biases expected from the change in \(E_{\text{env}} \) and \(F_{\text{ST}} \) (see above). We note that \(\Delta Z_{\text{O}_3} = 0 \) corresponds to \(\Delta T_{\text{proxy}} = 5^\circ \text{C} \), wherein the tropospheric \(\text{O}_3 \) burden at the LGM is unchanged from the PI; as such, it constitutes the lower limit for \(\Delta Z_{\text{eff}} \) and the upper bound to the \(\Delta T_{10-11\text{km}} \) vs. \(\Gamma \) relationship consistent with the \(\Delta \text{O}_3 \) proxy. Conversely, \(\Delta Z_{\text{O}_3} = 0.4 \) km corresponds to \(\Delta T_{\text{proxy}} = 3^\circ \text{C} \), the lower bound to the \(\Delta T_{10-11\text{km}} \) vs. \(\Gamma \) relationship.

Figure 5 shows the array of \(\Delta T_{10-11\text{km}} \) values consistent with the range of clumped-isotope proxy constraints, along with other relevant constraints on the upper-tropospheric cooling. The first ancillary constraint is the mean surface cooling (5.4°C); the positive water vapor feedback (Soden & Held, 2006) implies that the upper-tropospheric cooling must be at least as large as at the surface in the global mean. Similarly, the cooling associated with the moist
adiabatic response in the tropics (11.3 ± 0.9°C cooling at 11 km for a 3.3 ± 0.3°C cooling and a constant 80% relative humidity at the surface) sets a plausible upper limit to ΔT_{10−11km}. The real upper-tropospheric response in the tropics is likely weaker than for an undiluted moist adiabat, owing to the entrainment of unsaturated air into ascending plumes; however, the near-surface relative humidity may also be slightly lower in cooler climates (Schneider et al., 2010; Tripati et al., 2014), strengthening the response somewhat. The mean polar surface cooling (10.3°C) corroborates this upper limit to ΔT_{10−11km} because increased tropospheric static stability in cold climates leads to a shoaling of extratropical lapse rates (Manabe & Wetherald, 1975; Stone & Carlson, 1979; Schneider et al., 2010): mean upper-tropospheric temperatures will cool less than at the surface in the extratropics. We thus adopt the moist-adiabatic response as a conservative upper limit on ΔT_{10−11km}, as the shoaling of extratropical lapse rates would reduce the global-mean upper-tropospheric cooling.

The range of lapse rates compatible with the surface temperature change, the Δ3δ proxy constraint, and the tropical moist adiabatic limit is 6.1 – 7.1°C/km at the LGM, with a mean estimated steepening of ~0.2 – 0.4°C/km from the preindustrial value of 6.5°C/km. Thus, the clumped-isotope constraint is consistent with a minor or no change in the global-mean lapse rate at the LGM. The result is robust across the 95% confidence intervals in the LGM reanalysis, the range of planetary albedo estimated for the LGM (0.32 – 0.33), as well as the uncertainty in ΔT_proxy. The 3D model results are broadly consistent with this range in LGM upper-tropospheric cooling.

4.4. Comparison to other observational and modeling results. The results of this study suggest that the LGM lapse-rate results from East Africa (0.9°C/km steepening) (Loomis et al., 2017) do not reflect the global-mean response. A highly improbable ΔT_proxy cold bias of ~5°C (as opposed to 1°C), driven by a several-fold reduction in tropospheric O3 burden or increase in STT flux would be required to reconcile our data with the East-African results, if the latter were globally representative. Alternately, a LGM reduction in tropical near-surface relative humidity or increase in entrainment during tropical convection (Tripati et al., 2014) could explain larger lapse-rate changes in the tropics; however, the clumped-isotope data imply that extratropical lapse rate shoaling must temper any tendency toward a large tropical lapse-rate steepening. We note that high-altitude temperatures and terrestrial lapse rates inferred from snowline lowering and pollen assemblages are limited to altitudes 3 – 5 km above sea level, where temperatures can vary regionally due to large-scale circulation. In addition, along-slope lapse rates can be steeper than in free troposphere (Farrera, et al., 1999; Porter, 2000; Kageyama et al., 2005). Consequently, lapse rates obtained from terrestrial archives may simply reflect more localized climatic trends rather than the global tendency.

The lapse-rate climate feedback is the largest negative feedback diagnostic routinely evaluated in climate models (Soden & Held, 2006), so constraining the climate-dependent lapse-rate change using observations may yield insight on potential biases in model physics. Results from the Climate Model Intercomparison Project 5 / PMIP3 predict a LGM lapse-rate steepening of 0.2 – 0.6°C/km (Loomis et al., 2017), which is consistent with that implied by the clumped-isotope constraint. The global-scale inaccuracy of these models therefore appears to be subtle if present. We suggest that the previously documented proxy-model disagreements in the tropics may be related to the representation of local hydroclimate, land-atmosphere feedbacks, or surface topography at specific sites (Baldwin et al., 2021) rather than the planetary-scale energy balance.
5 Conclusions

Our findings demonstrate that clumped isotopes of O$_2$ in ice cores can provide novel insights into the past climate of the upper troposphere. The broad spatial integration of tropospheric temperatures captured by the Δ_{36} proxy yields a global-scale snapshot of high-altitude climate that is inaccessible through other means. We find quantitative agreement between the simulated and observed changes in tropospheric Δ_{36} value over a range of conditions, the former of which suggests a minor lapse-rate steepening (~0.1°C/km) at the LGM. Yet, the measurement-model agreement found here—particularly for the “high-fire” LGM-DA to PI scenario—does not by itself preclude steeper lapse-rate responses to climate. For example, a smaller LGM reduction in the tropospheric O$_3$ burden than predicted can offset the effects of lapse-rate steepening in the model, even for the same surface cooling. Nevertheless, energy balance constraints also require a small or negligible global lapse-rate change at the LGM (~0.2 – 0.4°C/km) to be consistent with the Δ_{36} data. While uncertainties about past tropospheric O$_3$ and stratosphere-troposphere dynamics remain, the climate sensitivity of the tropospheric Δ_{36} value may eventually allow it to provide a new constraint on the phasing of greenhouse-gas concentrations, global temperatures, and changes in atmospheric chemistry. Moreover, when interpreted in the context of surface temperature records, the evolution of high-altitude temperatures may offer insights on the atmospheric heat budget in different climates.

Acknowledgments

This work was supported by the National Science Foundation (grants AGS-2002422 and AGS-2002414) and the David and Lucile Packard Foundation Science & Engineering Fellowship. We thank G. Hargreaves, M. Twickler and R. Nunn at the National Science Foundation Ice Core Facility for ice core sampling assistance and curation. We thank T. Sun for help in the laboratory. The authors declare no conflict of interest.

Open Research

The ice core clumped isotope measured data is available as Supplementary information with this publication and can also be downloaded from https://doi.pangaea.de/10.1594/PANGAEA.940250 and https://doi.pangaea.de/10.1594/PANGAEA.940249. The LGM data assimilation meteorology files can be found at https://doi.org/10.5281/zenodo.5171432. The MATLAB codes for offline computation of Δ_{36} and effective re-ordering altitudes used in this study is available from authors upon reasonable request.

Conflict of Interest Statement

The authors have no conflict of interest to declare.
References

Figure 1. Comparison of atmospheric Δ$_{36}$ values for the LGM, PI, and PD. (a) Measured distribution for the LGM (blue), PI (red) & PD (grey). The PI and PD data are from (Yeung et al., 2019). Black lines represent the mean values for each time period, which are shown below each dataset. (b) Kernel-smoothed bootstrap probability density distributions of mean atmospheric Δ$_{36}$ values for the LGM, PI and PD.
Figure 2. Sensitivity of endmember Δ_{36} values at photochemical steady state (i.e., $\Delta_{36,ss}$). Pressures ranging from 250 – 450 mbar are comparable to those sampled in the troposphere by the Δ_{36} tracer. The shaded area shows the 2σ uncertainty limits based on the laboratory uncertainty in isotope-exchange rate coefficients (Fleurat-Lessard et al., 2003).
Figure 3. Zonal-mean air temperature change (LGM relative to PI) using the (a) LGM-GISS and (b) LGM-DA meteorologies. White spaces at near surface elevation represent modeled changes in elevation during the LGM due to change in ice sheet elevation.
Figure 4: Measured and modeled mean Δ_{36} differences between the LGM, PI and PD. Error bars represent the bootstrap 95% confidence interval.
Figure 5. Upper-tropospheric cooling at the LGM compatible with Δ_{36} proxy and thermodynamic, radiative, and dynamical constraints. The shaded areas reflect a conservative range in uncertainty that includes uncertainties in global-mean surface temperature and planetary albedo changes.
Table 1. \(O_3 \) burden and \(\Delta_{36} \) diagnostics derived from model simulations for different climate and biomass-burning scenarios.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>(O_3) burden (Tg (O_3))</th>
<th>(\Delta_{36,\text{trop}}) (‰)*</th>
<th>(\Delta_{36,\text{t}}) (‰)†</th>
<th>(\Delta_{36,\text{strat}}) (‰)‡</th>
<th>Mean effective altitude for (\Delta_{36,\text{t}}) (km)§</th>
<th>(E_{\text{trop}}) (10(^{19}) mol (O_2) yr(^{-1}))</th>
<th>(F_{\text{ST}}) (10(^{19}) mol (O_2) yr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGM-GISS low-fire</td>
<td>239</td>
<td>2.19</td>
<td>2.11</td>
<td>2.51</td>
<td>11.3</td>
<td>1.16</td>
<td>0.28</td>
</tr>
<tr>
<td>LGM-GISS high-fire</td>
<td>282</td>
<td>2.14</td>
<td>2.05</td>
<td>2.51</td>
<td>10.9</td>
<td>1.34</td>
<td>0.29</td>
</tr>
<tr>
<td>LGM-DA low fire</td>
<td>224</td>
<td>2.20</td>
<td>2.11</td>
<td>2.50</td>
<td>11.3</td>
<td>1.09</td>
<td>0.31</td>
</tr>
<tr>
<td>LGM-DA high fire</td>
<td>273</td>
<td>2.15</td>
<td>2.06</td>
<td>2.50</td>
<td>10.9</td>
<td>1.29</td>
<td>0.33</td>
</tr>
<tr>
<td>PI low-fire</td>
<td>272</td>
<td>2.12</td>
<td>2.05</td>
<td>2.47</td>
<td>11.6</td>
<td>1.39</td>
<td>0.25</td>
</tr>
<tr>
<td>PI high-fire</td>
<td>298</td>
<td>2.09</td>
<td>2.03</td>
<td>2.47</td>
<td>11.4</td>
<td>1.50</td>
<td>0.26</td>
</tr>
<tr>
<td>PD</td>
<td>340</td>
<td>2.06</td>
<td>1.99</td>
<td>2.47</td>
<td>11.3</td>
<td>1.73</td>
<td>0.25</td>
</tr>
</tbody>
</table>

*Global-mean surface \(\Delta_{36} \) value
†Endmember \(\Delta_{36} \) value for isotope exchange occurring only in the troposphere
‡Endmember \(\Delta_{36} \) value for isotope exchange occurring only in the stratosphere
§Relative to PI sea level
Table 2. Comparison of 3D- and 1D-model-derived \(\Delta Z_{\text{eff}} \) according to eqs. 5 – 8 for a range of low-fire (LF) and high-fire (HF) scenarios.

<table>
<thead>
<tr>
<th></th>
<th>(\Delta Z_{\text{O3}})</th>
<th>(\Delta Z_{\text{TP}})</th>
<th>(\Delta Z_{\text{SL}})</th>
<th>(\Delta Z_{\text{eff}})</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3D</td>
<td>1D</td>
<td>3D</td>
<td>1D</td>
<td>3D</td>
</tr>
<tr>
<td>LGM-GISS – PI LF</td>
<td>0.25</td>
<td>0.27</td>
<td>−0.46</td>
<td>−0.53*</td>
<td>−0.13</td>
</tr>
<tr>
<td>LGM-GISS – PI HF</td>
<td>0.09</td>
<td>0.11</td>
<td>−0.46</td>
<td>−0.53*</td>
<td>−0.13</td>
</tr>
<tr>
<td>LGM-DA – PI HF</td>
<td>0.51</td>
<td>0.40</td>
<td>−0.72</td>
<td>−0.68*</td>
<td>−0.13</td>
</tr>
<tr>
<td>LGM-DA – PI HF</td>
<td>0.30</td>
<td>0.18</td>
<td>−0.72</td>
<td>−0.68*</td>
<td>−0.13</td>
</tr>
<tr>
<td>PI LF – PD</td>
<td>0.42</td>
<td>0.45</td>
<td>−0.15</td>
<td>−0.11</td>
<td>0.00</td>
</tr>
<tr>
<td>PI HF – PD</td>
<td>0.23</td>
<td>0.29</td>
<td>−0.15</td>
<td>−0.11</td>
<td>0.00</td>
</tr>
</tbody>
</table>

*For LGM lapse-rate steepening of 0.1°C/km.