Impacts of cold ionospheric ions in magnetic reconnection at the Earth’s magnetopause and magnetotail

Sergio Toledo Redondo¹, Mats Andre², Nicolas Aunai³, Charles Chappell⁴, Jérémy Dargent⁵, Stephen Fuselier⁶, Alex Glocer⁷, Daniel Graham⁸, Stein Haaland⁹, Michael Hesse¹⁰, Lynn Kistler¹¹, Benoit Lavraud¹², Wenya Li⁸, Thomas Moore¹³, Sarah Vines¹⁴, and Paul Tenfjord¹⁰

¹University of Murcia
²Swedish Inst Space Physics
³Laboratoire de Physique des Plasmas, CNRS
⁴Utah State Univ
⁵University of Pisa
⁶Southwest Research Institute
⁷NASA/GSFC
⁸IRF Swedish Institute of Space Physics Uppsala
⁹Birkeland Centre for Space Science, University of Bergen, Bergen, Norway
¹⁰University of Bergen
¹¹Univ New Hampshire
¹²IRAP
¹³NASA Goddard Space Flight Ctr
¹⁴University of Texas at San Antonio

November 22, 2022

Abstract

The Earth’s magnetosphere is filled by particles from two sources: the solar wind and the ionosphere. Ionospheric ions are initially cold and contain He⁺ and O⁺, in addition to to H⁺. Depending on their initial magnetic latitude and local time, and the state of the magnetosphere, they may contribute to the plasmasphere, the plasma sheet, the ring current, the warm plasma cloak etc. Depending on which path they follow in the magnetosphere, some of these ionospheric ions remain cold when they reach the two key reconnection regions: the Earth’s magnetopause and the plasma sheet in the tail. In this presentation, we will first review previous statistical works that quantify the number of cold/ionospheric ions near these two regions. Several works have attempted to quantify these populations, but they are inherently difficult to characterize due to their low energy, often below the spacecraft potential. We will also discuss the impacts they have on the magnetic reconnection process. Ionospheric ions mass-load the regions where reconnection takes place and change the characteristic Alfvén speed, resulting in a smaller reconnection electric field. They also take a portion of the energy that is imparted to particles, affecting the energy budget of magnetic reconnection. Finally, they introduce new length and time scales, associated to their gyroradius and gyroperiod. We will discuss what are the implications of these impacts for the evolution of the magnetosphere – solar wind interactions.
Impacts of cold Ionospheric Ions on Magnetic Reconnection at the Earth’s Magnetopause and Magnetotail

S. Toledo-Redondo1,2, M. André3, N. Aunai4, C. R. Chappell5, J. Dargent6, S. A. Fuselier7,8, A. Glocer9, D. B. Graham3, S. Haaland10,11,12, M. Hesse13, L. M. Kistler14, B. Lavraud2,15, W.Y. Li16, T. E. Moore8, P. Tenfjord11, and S. K. Vines17

1University of Murcia, 2IRAP, 3IRFU, 4LPP, 5Vanderbilt University, 6University of Pisa 7SwRI, 8University of Texas 9NASA-GSFC, 10Max-Planck Institute, 11University of Bergen, 12The University Centre in Svalbard, 13NASA Ames Research Center, 14University of New Hampshire, 15Université de Bordeaux, 16NSSC-China, 17JHU-APL

AGU FALL MEETING

New Orleans, LA & Online Everywhere
13–17 December 2021
Key Points:
- Ionospheric plasma contributes a significant part of the magnetospheric density in the regions where magnetic reconnection is most frequent.
- Cold and heavy ions of ionospheric origin reduce magnetic reconnection efficiency and modify energy conversion mechanisms.
- The presence of ionospheric ions and their effects on reconnection and magnetospheric dynamics are enhanced during geomagnetic storms.

Impacts of Ionospheric Ions on Magnetic Reconnection and Earth’s Magnetosphere Dynamics

S. Toledo-Redondo1,2, M. André3, N. Aunai4, C. R. Chappell5, J. Dargent6, S. A. Fuselier7,8, A. Glozer9, D. B. Graham3, S. Haaland10,11,12, M. Hesse13, L. M. Kistler14, B. Lavraud2,15, W. Li16, T. E. Moore8, P. Tenfjord11, and S. K. Vines17

1Department of Electromagnetism and Electronics, University of Murcia, Murcia, Spain, 2Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France, 3Swedish Institute of Space Physics, Uppsala, Sweden, 4Laboratoire de Physique des Plasmas, Paris, France, 5Physics and Astronomy Department, Vanderbilt University, Nashville, TN, USA, 6Physics Department E. Fermi, University of Pisa, Pisa, Italy, 7Southwest Research Institute, San Antonio, TX, USA, 8Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA, 9NASA Goddard Space Flight Center, Greenbelt, MD, USA, 10Max-Planck Institute for Solar Systems Research, Göttingen, Germany, 11Space Plasma Physics Group, University of Bergen, Bergen, Norway, 12The University Centre in Svalbard, Longyearbyen, Norway, 13Science Directorate, NASA Ames Research Center, Moffett Field, CA, USA, 14Institute for the Study of Earth Oceans and Space, University of New Hampshire, Durham, NH, USA, 15Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Pessac, France, 16State Key Laboratory of Space Weather, National Space Science Center, Beijing, China, 17Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

Correspondence to: S. Toledo-Redondo, Sergio.Toledo@um.es
Introduction
Ionospheric-originating ions

Ionospheric-originating (cold) populations in the outer magnetosphere:

1. Detached plasmasphere material (eV)
2. Ionospheric outflows (eV)
3. Warm Plasma Cloak (WPC) (10 – 1keV)
Cold ion and electron VDFs measurement

RBSP1+2 SC charging statistics (Feb 2013 – April 2015)

Sarno-Smith et al. (2016)

Spacecraft charging prevents or hinders measurement of cold VDFs
Cold ion and electron VDFs measurement
Ionospheric ions at the dayside magnetopause
Review of statistical studies

- Cold ionospheric protons increase magnetospheric density near the magnetopause by a factor 2 or more most of the time.

- However, the magnetospheric density is usually 1 order of magnitude than magnetosheath density.

Based on 12 independent statistical studies, see Toledo-Redondo et al. (2021)
Ionospheric ions at the magnetotail
Review of statistical studies

Based on 13 independent statistical studies, see Toledo-Redondo et al. (2021)
Mass-loading of reconnection

\[E_R \sim B_{in} \cdot v_{out} \left(\frac{l}{L} \right) \]

\[V_{out} = v_A = B_{out}^2 / (\mu_0 \rho_{out}) \]
Mass-loading of reconnection

\[E_R \sim B_{in} v_{out} \left(\frac{1}{l/L} \right) \]

\[V_{out} = v_A = B_{out}^2 / (\mu_0 \rho_{out}) \]

Walsh et al. (2013, 2014)

See also Borovsky and Denton (2006), Borovsky (2008), Borovsky et al. (2013)
Ionospheric ions and magnetic reconnection
Mass-loading the magnetopause locally

- Reduction in reconnection efficiency by >20% only during <5% of the time (Fuselier et al. 2017, 2019).

- During disturbed magnetospheric times (ie increased O\(^+\)), reduction in reconnection efficiency >20% during ~25% of the time.

- Observational evidence (not statistics) of 40% reduction due to plumes (H\(^+\) and He\(^+\))

\[
R = \frac{E_{ML}}{E_s} = \frac{1}{\sqrt{1 + \frac{\rho_m B_s}{\rho_s B_m}}}
\]
Additional length-scales in kinetic processes

Toledo-Redondo et al. (2015)

\[
\begin{align*}
\vec{E} &= -\vec{v}_h \times \vec{B} + \frac{1}{ne} \vec{J} \times \vec{B} - \frac{1}{ne} \nabla \vec{P}_e \\
&= -\frac{n_h}{n} \vec{v}_h \times \vec{B} - \frac{n_c}{n} \vec{v}_c \times \vec{B} + \frac{1}{ne} \vec{J} \times \vec{B} - \frac{1}{ne} \nabla \vec{P}_e
\end{align*}
\]

"**Cold ions** introduce a **new length-scale** owing to their smaller gyroradius. They can reduce the perpendicular currents at these scales."
André et al. (2016), Toledo-Redondo et al. (2018)
Ionospheric ions and magnetic reconnection

Cold ion diffusion region

electrons
cold ions
hot ions

Divin et al. (2016)
The relative motion between the magnetized cold ions and the magnetosheath ions favours an *ion – ion drift instability* at the separatrix that generates *lower hybrid drift waves*. These waves can *heat the cold ions* and demagnetize them.

Graham et al. (2017)

Steinvall et al. (2021)

Ion acoustic waves are formed in the separatrix and outflow region of dayside reconnection.

88% of the IAW observed at the magnetopause during 5 months of MMS data are in association to cold ions ($n_0/n > 0.6$)
Ionospheric ions and magnetic reconnection
Cold ion heating and energy budget

Toledo-Redondo+, GRL, (2016b)
Toledo-Redondo+, JGR, (2017)
Table 4

Summary of Open Questions in the Role of Ionospheric Ions and Magnetic Reconnection in the Magnetosphere

<table>
<thead>
<tr>
<th>Category</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global magnetospheric dynamics</td>
<td>What is the relative contribution of solar wind versus ionospheric-originating H(^+) to the magnetosphere?</td>
</tr>
<tr>
<td></td>
<td>How is the plasma sheet formed?</td>
</tr>
<tr>
<td></td>
<td>Does the variable magnetospheric density affect the global coupling with the solar wind efficiency?</td>
</tr>
<tr>
<td>Kinetic physics of magnetic reconnection</td>
<td>How do the microphysics introduced by multiple ion populations change reconnection at MHD scales?</td>
</tr>
<tr>
<td></td>
<td>Does the WPC alter the suppression of magnetic reconnection?</td>
</tr>
<tr>
<td></td>
<td>Which portion of the reconnection energy is taken by cold and heavy ions?</td>
</tr>
<tr>
<td></td>
<td>What are the effects of cold electrons in magnetic reconnection?</td>
</tr>
<tr>
<td></td>
<td>How ionospheric ions in the plasma sheet condition the onset of magnetic reconnection?</td>
</tr>
</tbody>
</table>

Abbreviation: WPC, warm plasma cloak.
Conclusions

- The **ionosphere** is a **primary supplier** of plasma to the Earth’s magnetosphere, together with the solar wind (roughly same order of magnitude).

- Changes in global coupling to SW due to **mass-loading** of the magnetosphere are **significant only during disturbed conditions** of the magnetosphere.

- Ionospheric populations introduce **new time and length-scales** into magnetic reconnection and **modify kinetic processes** (reconnection, micro-instabilities).

- How these **microphysics** changes affect the magnetosphere dynamics on **global scales** remains **unknown**.
THANK YOU
Introduction
Ionospheric outflows

Chappell et al. (1987, 2000)
Akasofu (2015)
Cold ion and electron VDFs measurement

Spacecraft charging prevents or hinders measurement of cold VDFs
Ionospheric ions at the dayside magnetopause
Review of statistical studies

- Dusk side magnetopause (dominated by detached plasmaspheric material)
 - Cold ionospheric protons are present >80% of the time, with densities of few tenths of cm\(^{-3}\)
 - During 20 – 25 % of the time, cold proton density is > 3 cm\(^{-3}\) (mainly plumes)

- Dawn side magnetopause (dominated by WPC)
 - Cold ionospheric protons are present 50 – 70 % of the time, with densities of few tenths to few cm\(^{-3}\)
 - During ~10 % of the time, cold proton density is > 3 cm\(^{-3}\)

- Plasma sheet ions are both of ionospheric and solar wind origin, and have densities of up to ~0.5 cm\(^{-3}\) near the magnetopause
Ionospheric ions and magnetic reconnection

O\(^+\) in magnetotail, reconnection onset

- The presence of O\(^+\) should make the tail more unstable to tearing instability (eg Baker et al. 1982)
Impacts of cold Ionospheric Ions on Magnetic Reconnection at the Earth’s Magnetopause and Magnetotail

S. Toledo-Redondo1,2, M. André3, N. Aunai4, C. R. Chappell5, J. Dargent6, S. A. Fuselier7,8, A. Glocer9, D. B. Graham3, S. Haaland10,11,12, M. Hesse13, L. M. Kistler14, B. Lavraud2,15, W.Y. Li16, T. E. Moore8, P. Tenfjord11, and S. K. Vines17

1University of Murcia, 2IRAP, 3IRFU, 4LPP, 5Vanderbilt University, 6University of Pisa, 7SwRI, 8University of Texas, 9NASA-GSFC, 10Max-Planck Institute, 11University of Bergen, 12The University Centre in Svalbard, 13NASA Ames Research Center, 14University of New Hampshire, 15Université de Bordeaux, 16NSSC-China, 17JHU-APL
Reviews of Geophysics

REVIEW ARTICLE
10.1029/2020RG000707

Key Points:
- Ionospheric plasma contributes a significant part of the magnetospheric density in the regions where magnetic reconnection is most frequent
- Cold and heavy ions of ionospheric origin reduce magnetic reconnection efficiency and modify energy conversion mechanisms
- The presence of ionospheric ions and their effects on reconnection and magnetospheric dynamics are enhanced during geomagnetic storms

Impacts of Ionospheric Ions on Magnetic Reconnection and Earth’s Magnetosphere Dynamics

1Department of Electromagnetism and Electronics, University of Murcia, Murcia, Spain, 2Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France, 3Swedish Institute of Space Physics, Uppsala, Sweden, 4Laboratoire de Physique des Plasmas, Paris, France, 5Physics and Astronomy Department, Vanderbilt University, Nashville, TN, USA, 6Physics Department E. Fermi, University of Pisa, Pisa, Italy, 7Southwest Research Institute, San Antonio, TX, USA, 8Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA, 9NASA Goddard Space Flight Center, Greenbelt, MD, USA, 10Max-Planck Institute for Solar Systems Research, Göttingen, Germany, 11Space Plasma Physics Group, University of Bergen, Bergen, Norway, 12The University Centre in Svalbard, Longyearbyen, Norway, 13Science Directorate, NASA Ames Research Center, Moffett Field, CA, USA, 14Institute for the Study of Earth Oceans and Space, University of New Hampshire, Durham, NH, USA, 15Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Pessac, France, 16State Key Laboratory of Space Weather, National Space Science Center, Beijing, China, 17Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

Correspondence to:
S. Toledo-Redondo,
Sergio.Toledo@um.es
Introduction
Ionospheric-originating ions

Ionospheric-originating (cold) populations in the outer magnetosphere:

1. Detached plasmasphere material (eV)
2. Ionospheric outflows (eV)
3. Warm Plasma Cloak (WPC) (10 – 1keV)
Cold ion and electron VDFs measurement

RBSP1+2 SC charging statistics (Feb 2013 – April 2015)

Sarno-Smith et al. (2016)

Spacecraft charging prevents or hinders measurement of cold VDFs
Cold ion and electron VDFs measurement

Toledo-Redondo et al. (2019)
Ionospheric ions at the dayside magnetopause

Review of statistical studies

- Cold ionospheric protons **increase magnetospheric density** near the magnetopause by a factor 2 or more most of the time.

- However, the magnetospheric density is usually 1 order of magnitude than magnetosheath density.

Based on 12 independent statistical studies, see Toledo-Redondo et al. (2021)
Ionospheric ions at the magnetotail
Review of statistical studies

Based on 13 independent statistical studies, see Toledo-Redondo et al. (2021)
Mass-loading of reconnection

\[\mathbf{E}_R \sim B_{in} \mathbf{v}_{out} \left(\frac{l}{L} \right) \]

\[\mathbf{V}_{out} = \mathbf{v}_A = B_{out}^2 / (\mu_0 \rho_{out}) \]
Mass-loading of reconnection

\[E_R \sim B_{in} v_{out} \left(\frac{l}{L} \right) \]

\[V_{out} = v_A = B_{out}^2 / (\mu_0 \rho_{out}) \]

See also Borovsky and Denton (2006), Borovsky (2008), Borovsky et al. (2013)
Ionospheric ions and magnetic reconnection
Mass-loading the magnetopause locally

• Reduction in reconnection efficiency by >20% only during <5% of the time (Fuselier et al. 2017, 2019).

• During disturbed magnetospheric times (ie increased O⁺), reduction in reconnection efficiency >20% during ~25% of the time.

• Observational evidence (not statistics) of 40% reduction due to plumes (H⁺ and He⁺)

\[
R = \frac{E_{ML}}{E_s} = \frac{1}{\sqrt{1 + \frac{\rho_m B_s}{\rho_s B_m}}}
\]
Cold ions introduce a new length-scale owing to their smaller gyroradius. They can reduce the perpendicular currents at these scales.
No cold ions

few cold ions (1cc)

many cold ions (10 cc)

André et al. (2016), Toledo-Redondo et al. (2018)
Ionospheric ions and magnetic reconnection

Cold ion diffusion region

Divin et al. (2016)
Ionospheric ions and magnetic reconnection

Cold ion heating mechanisms

The relative motion between the magnetized cold ions and the magnetosheath ions favours an ion–ion drift instability at the separatrix that generates lower hybrid drift waves. These waves can heat the cold ions and demagnetize them.

Ion acoustic waves are formed in the separatrix and outflow region of dayside reconnection.

88% of the IAW observed at the magnetopause during 5 months of MMS data are in association to cold ions ($n_c/n > 0.6$)

Graham et al. (2017) Steinvall et al. (2021)
Ionospheric ions and magnetic reconnection
Cold ion heating and energy budget

Toledo-Redondo+, GRL, (2016b)
Toledo-Redondo+, JGR, (2017)
Some open questions for the community

Table 4
Summary of Open Questions in the Role of Ionospheric Ions and Magnetic Reconnection in the Magnetosphere

| Global magnetospheric dynamics | What is the relative contribution of solar wind versus ionospheric-originating H⁺ to the magnetosphere?
| | How is the plasma sheet formed?
| | Does the variable magnetospheric density affect the global coupling with the solar wind efficiency? |
| Kinetic physics of magnetic reconnection | How do the microphysics introduced by multiple ion populations change reconnection at MHD scales?
| | Does the WPC alter the suppression of magnetic reconnection?
| | Which portion of the reconnection energy is taken by cold and heavy ions?
| | What are the effects of cold electrons in magnetic reconnection?
| | How ionospheric ions in the plasma sheet condition the onset of magnetic reconnection? |

Abbreviation: WPC, warm plasma cloak.
Conclusions

The ionosphere is a primary supplier of plasma to the Earth’s magnetosphere, together with the solar wind (roughly same order of magnitude).

Changes in global coupling to SW due to mass-loading of the magnetosphere are significant only during disturbed conditions of the magnetosphere.

Ionospheric populations introduce new time and length-scales into magnetic reconnection and modify kinetic processes (reconnection, micro-instabilities).

How these microphysics changes affect the magnetosphere dynamics on global scales remains unknown.
THANK YOU
Introduction
Ionospheric outflows

Chappell et al. (1987, 2000)
Akasofu (2015)
Spacecraft charging prevents or hinders measurement of cold VDFs
• Dusk side magnetopause (dominated by detached plasmaspheric material)
 – Cold ionospheric protons are present >80% of the time, with densities of few tenths of cm$^{-3}$
 – During 20 – 25 % of the time, cold proton density is > 3 cm$^{-3}$ (mainly plumes)

• Dawn side magnetopause (dominated by WPC)
 – Cold ionospheric protons are present 50 – 70 % of the time, with densities of few tenths to few cm$^{-3}$
 – During ~10 % of the time, cold proton density is > 3 cm$^{-3}$

• Plasma sheet ions are both of ionospheric and solar wind origin, and have densities of up to ~0.5 cm$^{-3}$ near the magnetopause
Ionospheric ions and magnetic reconnection
O+ in magnetotail, reconnection onset

- The presence of O+ should make the tail more unstable to tearing instability (eg Baker et al. 1982)

Nosé et al. (2009)