Changes in the Arctic Ocean carbon cycle with diminishing ice cover

Michael D. DeGrandpre¹, Wiley Evans², Mary-Louise Timmermans³, Richard A. Krishfield⁴, William J Williams⁵, and Michael Steele⁶

¹University of Montana
²Hakai Institute
³Yale University
⁴Woods Hole Oceanographic Institution
⁵DFO-IOS, Sydney, BC
⁶University of Washington

November 22, 2022

Abstract

Less than three decades ago only a small fraction of the Arctic Ocean (AO) was ice free and then only for short periods. The ice cover kept sea surface CO₂ levels lower relative to other ocean basins that have been exposed year round to ever increasing atmospheric levels. In this study, we evaluate sea surface CO₂ measurements collected over a 6-year period along a fixed cruise track in the Canada Basin. The measurements show that mean CO₂ levels are significantly higher during low ice years. The CO₂ increase is likely driven by ocean surface heating and uptake of atmospheric CO₂ with large interannual variability in the contributions of these processes. These findings suggest that increased ice-free periods will further increase sea surface CO₂, reducing the Canada Basin’s current role as a net sink of atmospheric CO₂.
Changes in the Arctic Ocean carbon cycle with diminishing ice cover

Michael DeGrandpre\textsuperscript{1*}, Wiley Evans\textsuperscript{2}, Mary-Louise Timmermans\textsuperscript{3}, Richard Krishfield\textsuperscript{4}, Bill Williams\textsuperscript{5} and Michael Steele\textsuperscript{6}

\textsuperscript{1}University of Montana, Missoula, MT, USA.
\textsuperscript{2}Hakai Institute, Heriot Bay, BC, Canada.
\textsuperscript{3}Yale University, New Haven, CT, USA.
\textsuperscript{4}Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
\textsuperscript{5}Institute of Ocean Sciences, Sidney, BC, Canada.
\textsuperscript{6}University of Washington, Seattle, WA, USA.

Corresponding author: Michael DeGrandpre (michael.degrandpre@umontana.edu)

Abstract (150 words max)

Less than three decades ago only a small fraction of the Arctic Ocean (AO) was ice free and then only for short periods. The ice cover kept sea surface $p$CO$_2$ at levels lower relative to other ocean basins that have been exposed year round to ever increasing atmospheric levels. In this study, we evaluate sea surface $p$CO$_2$ measurements collected over a 6-year period along a fixed cruise track in the Canada Basin. The measurements show that mean $p$CO$_2$ levels are significantly higher during low ice years. The $p$CO$_2$ increase is likely driven by ocean surface heating and uptake of atmospheric CO$_2$ with large interannual variability in the contributions of these processes. These findings suggest that increased ice-free periods will further increase sea surface $p$CO$_2$, reducing the Canada Basin’s current role as a net sink of atmospheric CO$_2$. 
Plain Language Summary

The Arctic Ocean (AO) ice cover is decreasing, exposing the sea surface to exchange with the gases in the atmosphere. Consequently, anthropogenic CO$_2$ that has accumulated in the atmosphere can now more readily enter the AO. It is expected that this will lead to an increase in CO$_2$ in the AO but because of a lack of data in the region, a clear relationship has not been established. We have measured the partial pressure of CO$_2$ ($p$CO$_2$) in the Canada Basin of the AO during 5 cruises spanning 2012-2017. These data have revealed that the $p$CO$_2$ is higher during years when ice concentration is low, supporting the previous hypothesis. Using a model, we have shown that while uptake of atmospheric CO$_2$ has increased $p$CO$_2$, heating has also been important. These processes vary significantly from year to year, masking the likely increase in $p$CO$_2$ over time. Based on these results, we can expect that while the Canada Basin has been a sink for atmospheric CO$_2$, the uptake of atmospheric CO$_2$ will diminish in the coming years.

1. Introduction

The rapid loss of sea ice in the Arctic Ocean (AO) is well-documented (Meier et al., 2014). Other changes in the AO are also becoming evident. Freshwater content is increasing due to sea ice melt and river runoff (e.g., Yamamoto-Kawai et al., 2009; Proshutinsky et al., 2009; Krishfield et al., 2014). Sea surface temperature has also increased (e.g., Steele et al., 2008; Toole et al., 2010; Perovich et al., 2011; Timmermans, 2015). This evolving physical environment is altering biological production (Arrigo and van Dijken, 2015; Bergeron and Tremblay, 2014) and food web structure (Li et al., 2009; Søreide et al., 2010; Hunt et al., 2014). The carbon cycle in the AO is intimately connected to these processes (Anderson and Macdonald, 2015), but it is not clear how carbon sources and sinks are changing in the AO and if they could affect CO$_2$ accumulation in the atmosphere and sea surface.

Sea surface $p$CO$_2$ is a key carbon cycle parameter because it is used to determine air-sea CO$_2$ fluxes for global carbon budgets and for understanding the rate of ocean acidification. Despite this, sea surface $p$CO$_2$ measurements in the AO are spatially and temporally sparse. While $p$CO$_2$ measurements date back decades (Kelley, 1970) and have continued on sporadic research cruises
(Bates et al., 2006; Cai et al., 2010; Jutterström and Anderson, 2010; Robbins et al., 2013; Evans et al., 2015; Ahmed et al., 2019), measurements are mostly from AO shelf regions in the summer and fall due to limited access to more heavily ice-covered regions. Few studies have included repeat shipboard pCO₂ measurements from the AO’s deep basins. The interior basins comprise ~50% of the surface area of the AO (Bates et al., 2011) and, because of their reduced seasonal variability compared to AO coastal margins, might provide an earlier indicator of changes in pCO₂ as the ice-free sea surface is exposed to present-day atmospheric CO₂ levels.

There is evidence from previous studies that pCO₂ levels in the oligotrophic AO basins are changing. Cai et al., (2010), Miller et al., (2014) and Yasunaka et al., (2016; 2018) have found that pCO₂ has increased along the Chukchi shelf and slope and in the Canada Basin. While the AO is known to be a sink for atmospheric CO₂ (Bates et al., 2011; Arrigo et al., 2010; Yasunaka et al., 2016, 2018; Islam et al., 2016, 2017), its contribution to global air-sea CO₂ fluxes remains highly uncertain (Anderson and Macdonald, 2015). Estimated to uptake between 70 and 200 teragrams (Tg) carbon per year or 5 - 14% of the global uptake (Bates et al., 2011; Yasunaka et al., 2018), continued ice loss will make these estimates even more uncertain. Increased CO₂ uptake by the AO will also accelerate ocean acidification, i.e, driving a commensurate decrease in pH that increases calcium carbonate solubility (Yamamoto-Kawai et al., 2009; Robbins et al., 2013). In this manuscript, a shipboard pCO₂ time-series collected from 2012-2017 in the AO’s Canada Basin reveals that pCO₂ increases with decreasing ice concentration. We use a temporal reference, days since ice retreat (DSR), and a mass balance model to examine to what extent ice-dependent processes such as air-sea CO₂ fluxes, surface ocean warming and biological production drive changes in sea surface pCO₂ after ice retreats.

2. Methods

Observations. Underway sea surface pCO₂ was measured on the Beaufort Gyre Observing System/Joint Ocean Ice Study (BGOS/JOIS) cruises on the CCGS Louis S. St-Laurent during 2012-2017. No pCO₂ measurements were made in 2015. The starting dates for the five ~4 week cruises were Aug. 6, 2012, Aug. 3, 2013, Sept. 25, 2014, Sept. 24, 2016 and Sept. 8, 2017. The pCO₂ was recorded using an infrared-gas equilibrator system (SUPER-CO₂, Sunburst Sensors, LLC) located in the ship’s lab. The instrument uses an infrared analyzer (LI-COR, LI-840A) and gas
phase equilibrator (Liqui-Cel membrane contactor, Model #G453) as described in Hales et al. (2003). The equilibrator was connected directly to the ship’s seawater line. Calibrations were automated using CO$_2$ gas standards and a zero CO$_2$ gas sample. Temperature was measured in the equilibrator and at the seawater intake (9 m depth), assumed equal to sea surface temperature (SST), as discussed below. The infrared analyzer CO$_2$ mole fraction was corrected to SST and converted to $p$CO$_2$ using 100% humidity at SST and local barometric pressure (Dickson et al., 2007). Some warming, usually <0.5 °C, can occur enroute to the equilibrator so it is essential to correct the $p$CO$_2$ for this temperature change. If there were greater than ~2°C differences between the equilibrator inlet temperature and SST, it was assumed seawater flow had stopped (e.g., due to ice clogging) and the $p$CO$_2$ was discarded during these periods. A flow meter was installed in 2016 to detect periods of low flow rate. The $p$CO$_2$ uncertainty is estimated to be ±5 µatm based on the reproducibility of the standards and baseline zero. CTD stations showed that the seawater intake was sometimes within the halocline (i.e., below the mixed layer) and this was also evident from the salinity and temperature variability recorded by the ship’s thermosalinograph. These conditions were found mostly on the continental shelf during 2012 and 2013 due to high Mackenzie River outflow. This analysis focuses on the Canada Basin bounded by 155-130° W and 72-82° N where CTD stations consistently found that mixed layer depths were greater than the ship intake depth.

Air temperature, wind speed (25 m height), wind direction, and barometric pressure were recorded by the ship’s weather system. Mixed layer depths, defined as the depth where the density difference from the surface first exceeds 0.25 kg m$^{-3}$ (Timmermans, et al., 2012), were determined using temperature and salinity from ~50 CTD casts occupied annually as part of the BGOS/JOIS cruises (Proshutinsky et al. 2019). Atmospheric $p$CO$_2$ was computed from the mole fraction of CO$_2$ measured at Alert, Nunavut, Canada using data from the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) (https://www.esrl.noaa.gov). Sea ice concentration with daily, 12 km resolution was obtained from the French Research Institute for Exploration of the Sea (IFREMER) (http://cersat.ifremer.fr/oceanography-fromspace/our-domains-of-research/sea-ice) that provides data collected by the satellite-based Special Sensor Microwave Imager (SSM/I) and processed by the National Snow and Ice Data Center (https://nsidc.org).
**Data analysis and modeling.** In this study our goals are to determine if sea surface $p$CO$_2$ levels are related to interannual variability in ice concentration and to evaluate processes that might control $p$CO$_2$ under low ice conditions. To facilitate analysis of the spatially and temporally disparate shipboard $p$CO$_2$ and other data, Canada Basin data were gridded by identifying 20x20 km grid areas that contain data, and those data were then averaged as described in Evans et al. (2015). The gridding routine computed the average and standard deviation of data found within each grid cell as well as the number of observations. The average number of observations for each grid cell ranged from 17-23 over the 5 cruises. The gridded data were spatially averaged for each cruise (i.e. each year) to allow interannual comparisons of the physical and biogeochemical conditions. Further, we used these yearly values as input to the mass balance model described below.

The mass balance model was used to examine how sea surface $p$CO$_2$ might change after ice retreats. Many processes contribute to sea surface $p$CO$_2$ variability including biological production, heating and cooling, physical mixing and upwelling, ice melt and formation and air-sea gas exchange. Sea surface warming and air-sea uptake are likely the most important factors for increasing $p$CO$_2$ in low ice areas in the Canada Basin (Cai et al., 2010; Else et al., 2013). The combined contributions of these two processes to sea surface $p$CO$_2$ variability were estimated using a dissolved inorganic carbon (DIC) mixed-layer mass balance (Martz et al., 2009; Islam et al., 2017) as follows,

$$
\Delta \text{DIC} = F_{\text{gaseous}} \times \Delta t / (\text{MLD} \times \rho) \tag{1}
$$

where $\Delta \text{DIC}$ is the change in DIC for a time step $\Delta t$ (1 hr in this study), $F_{\text{gaseous}}$ is the air-sea CO$_2$ flux (e.g., in mmol m$^{-2}$ d$^{-1}$), MLD is the mixed-layer depth, and $\rho$ is seawater density. Warming (increasing SST) is accounted for in the equilibrium calculation as described below. $F_{\text{gaseous}}$ was calculated using

$$
F_{\text{gaseous}} = k \times K_0 \times \Delta p\text{CO}_2 \times f, \tag{2}
$$

where $k$ is the gas transfer velocity, $K_0$ is the CO$_2$ solubility, $\Delta p\text{CO}_2$ is the $p$CO$_2$ difference be-
between the sea surface and atmosphere, and \( f \) is the fraction of open water (Prytherch et al., 2017; Butterworth and Miller, 2016). In this case, \( f \) is set equal to 1 because the \( p\text{CO}_2 \) was modeled only after the day of ice retreat (DOR), i.e. when ice concentration dropped below 15% in any grid cell (Steele and Dickinson, 2016), a value that is within the uncertainty of the satellite data (Ivanova et al., 2015). \( F_{\text{gase}} \) is negative when there is a net uptake of \( \text{CO}_2 \) by the ocean from the atmosphere. We used the wind speed relationship in Wanninkhof (2014) to compute \( k \), where ship wind speed was corrected to 10 m height. The average of second moments of wind speed (i.e., wind speed\(^2\)) were calculated as opposed to wind speed averages because short-term (< daily) variability in the winds is retained leading to higher gas transfer rates during periods of greater wind speed variability (Wanninkhof, 2014; Evans et al., 2015).

To examine potential contributions from biological production, net community production (NCP) was added to the mass balance,

\[
\Delta \text{DIC} = (F_{\text{gase}} + F_{\text{NCP}}) \times \Delta t/(\text{MLD} \times \rho) 
\]

where \( F_{\text{NCP}} \) is the net uptake of \( \text{CO}_2 \) due to biological production (e.g. in mmol m\(^{-2}\) d\(^{-1}\)). We used values from Ji et al. (2019) who measured NCP using \( \text{O}_2 \) isotope and \( \text{O}_2/\text{argon} \) methods during the same BGOS cruises, excluding 2017. In the mass balance models (i.e., Equations 1 and 3), DIC was incremented for each time step with \( \Delta \text{DIC} \) from Equation 1 or Equation 3. The \( p\text{CO}_2 \) was then recalculated using the new DIC, SST and salinity and a constant total alkalinity (\( A_T \)) in the equilibrium program CO2sys (Pierrot et al., 2006). The \( A_T \) was estimated using an \( A_T \)-salinity relationship derived from bottle samples during the BGOS cruises (Yamamoto-Kawai et al., 2005; DeGrandpre et al., 2019). \( A_T \) is a conservative property of seawater that does not change with temperature or air-sea \( \text{CO}_2 \) exchange (Millero, 2007). The duration of the model calculation is based on the maximum number of days since ice retreat (DSR) computed as the difference between the mean \( p\text{CO}_2 \) measurement date and the mean day of ice retreat (DOR) for all \( p\text{CO}_2 \) observations in each grid cell. For surface warming, SST was incremented equally for each time step from \(-1.5^\circ \text{C}\) to the mean SST (Table 1) from DSR = 0 days until the end of the DSR period similar to Else et al., (2013). The initial under-ice condition was chosen to be the freezing point of seawater at a salinity of 27 (-1.5° C) and a seawater \( p\text{CO}_2 \) of 300 \( \mu \text{atm} \) all derived from extrapolation of the mean gridded data versus mean ice concentration to 100% ice.
concentration. All equilibrium (CO2sys) calculations used the Mehrbach et al. (1973) constants refit by Dickson and Millero (1987). Lastly, mean gridded values were used in the model calculations (Table 1, Equations 1-3). A model that uses the evolution of ice concentration at each grid cell and includes other changing physical conditions, e.g. MLD or wind, was beyond the scope of this study.
Table 1: Mean cruise values used in the mass balance model derived from ship measurements and other sources (see Methods).

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean $pCO_2$ (µatm)</th>
<th>Sea ice concentration (%)</th>
<th>Wind speed (m s$^{-1}$)</th>
<th>Atm. $pCO_2$ (µatm)</th>
<th>SST (°C)</th>
<th>Salinity</th>
<th>Mixed layer depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>365 ± 34</td>
<td>8 ± 22</td>
<td>8.1 ± 1.1</td>
<td>379 ± 3</td>
<td>2.5 ± 3.6</td>
<td>25.5 ± 1.4</td>
<td>12.1 ± 6.6</td>
</tr>
<tr>
<td>2013</td>
<td>327 ± 24</td>
<td>59 ± 38</td>
<td>5.0 ± 1.0</td>
<td>384 ± 3</td>
<td>-0.1 ± 1.6</td>
<td>26.7 ± 0.8</td>
<td>15.5 ± 5.5</td>
</tr>
<tr>
<td>2014</td>
<td>318 ± 14</td>
<td>78 ± 32</td>
<td>5.8 ± 0.7</td>
<td>392 ± 4</td>
<td>0.6 ± 2.2</td>
<td>27.0 ± 0.7</td>
<td>27.2 ± 4.3</td>
</tr>
<tr>
<td>2016</td>
<td>371 ± 23</td>
<td>21 ± 37</td>
<td>6.6 ± 0.3</td>
<td>395 ± 3</td>
<td>-0.3 ± 1.0</td>
<td>27.1 ± 0.7</td>
<td>26.1 ± 4.7</td>
</tr>
<tr>
<td>2017</td>
<td>350 ± 21</td>
<td>19 ± 33</td>
<td>7.3 ± 0.7</td>
<td>395 ± 2</td>
<td>1.1 ± 1.9</td>
<td>26.9 ± 1.0</td>
<td>26.5 ± 5.1</td>
</tr>
</tbody>
</table>
Figure 1: Sea surface partial pressure of CO$_2$ ($p$CO$_2$) data obtained on the Canadian icebreaker CCGS Louis S. St-Laurent from 2012-2017. The $p$CO$_2$ levels are indicated by the color along the ship cruise track (right color bar). The dark shaded coloration (left color bar) represents sea ice concentration averaged from the daily satellite data collected over the course of each cruise. Data for this analysis were taken from the area bracketed by 155-130° W, 72-82° N in the Canada Basin. The ship visited the same stations each year but the cruise track varied to support other field studies and various other activities. The data gaps in 2013 were due to problems with the seawater intake. The starting dates for the five ~4 week cruises were Aug. 6, 2012, Aug. 3, 2013, Sept. 25, 2014, Sept. 24, 2016 and Sept. 8, 2017, top to bottom, respectively. No $p$CO$_2$ measurements were made in 2015.
3. Results and Discussion

The shipboard pCO$_2$ data collected on the Beaufort Shelf, Canada Basin, and eastern Chukchi Sea are shown in Figure 1 overlaid on % sea ice concentration. A large range of interannual variability in sea ice cover was observed during these cruises. In 2012, ice cover dropped to 3.4 million km$^2$, the lowest level observed since the satellite record began in 1978. The minimum ice extent rebounded in 2013 and 2014 to ~5.0 million km$^2$. All five years ranked in the top 10 lowest minima (National Snow and Ice Data Center, Arctic Sea Ice News and Analysis, [http://nsidc.org/arcticseaicenews](http://nsidc.org/arcticseaicenews)). Sea surface pCO$_2$ was also highly variable spatially and inter-annually. Open water in the Canada Basin typically had higher pCO$_2$ levels than pCO$_2$ recorded in ice-covered areas; for example, compare 2012 (low ice) and 2014 (more ice) in Figure 1.

![Figure 2: Canada Basin mean pCO$_2$ vs. mean sea ice concentration for each cruise shown in Figure 1. Symbols are labeled with each year. Means were computed using data gridded to a 20x20 km area in the region spanning 155-130° W and 72-82° N. The 95% confidence bands are included (dashed red curves). No measurements were made in 2015.](image)

Using the mean pCO$_2$ levels for each cruise reveals a significant correlation with ice concentration (Figure 2). Sea surface pCO$_2$ is higher and closer to atmospheric saturation during years of low ice concentration and exceeded atmospheric pCO$_2$ (Table 1) in some locations in 2012 and 2016 (Figure 1). Although sparser data sets over different regions have found evidence that sea surface pCO$_2$ in the AO is increasing with decreasing ice cover (Cai et al., 2010; Jutterström and...
Anderson, 2010; Else et al., 2013), no previous studies have documented a clear connection like that shown in Figure 2. The mean $p$CO$_2$ values from each cruise reveal this relationship with ice concentration by consolidating the variability – the gridded $p$CO$_2$ for each cruise covers the full range shown in Figure 2 obscuring interannual differences (Figure 1S).

The absence of sea ice exposes the surface ocean to direct solar radiation and atmospheric heating and the subsequent warming increases $p$CO$_2$. Air-sea exchange will also increase sea surface $p$CO$_2$ because, when the $p$CO$_2$ is lower than atmospheric levels, the AO will absorb CO$_2$ from the atmosphere (Figure 1, Table 1). These mechanisms for increasing $p$CO$_2$ in the surface ocean infer that $p$CO$_2$ is not only dependent upon the ice cover but also the duration of open water (Arrigo and van Dijken, 2015). Thus, the days since ice retreat (DSR) is used as a temporal reference, as defined above. We examine specific variables that might be important in driving the relationship between $p$CO$_2$ and sea ice concentration, including DSR, sea-surface temperature (SST), MLD, wind speed and NCP (Equations 1-3, Table 1).

The gridded sea surface $p$CO$_2$ shows mostly increasing values after ice retreat with large intra and interannual variability (Figure 3). Each year’s observations appear to have a relatively consistent upward trajectory, except for 2016 and 2017 (discussed below), suggesting similar processes were at work in the open water area of the Canada Basin during each cruise. The $p$CO$_2$ observations have more scatter with increasing DSR, possibly due to different physical conditions during each cruise and each year. Some of the interannual variability may be due to differences in cruise timing, but there are significant contrasts between cruises conducted over similar periods. For example, in Figure 2, the mean $p$CO$_2$ from the August cruises (2012 and 2013) differ significantly, as do data from the late September cruises (2014 and 2017). These differences are also evident in the $p$CO$_2$ data in Figure 3 with lower values in 2013 and 2014 compared to 2012 and 2016, respectively.

The results of the mass balance model are also shown in Figure 3. The model encompasses the range of observed variability using the mean conditions in Table 1. Although there is disagreement between observations and model curves during some years and some parts of the records, these results suggest that heating and/or gas exchange significantly contribute to the observed
increase in $pCO_2$ with increasing DSR and that these processes are highly variable from year to year (broken down in Figure 3S). In 2012, the model predicts that heating and gas exchange increased $pCO_2$ by ~60 and ~30 µatm, respectively; whereas in 2016, heating and gas exchange contributions were ~15 and ~65 µatm, respectively (Figure 3S). Also note that a smaller range of variability is observed and predicted for the cruise data with shorter DSR periods (2013 and 2014) (Figure 3 and Figure 3S), where surface ocean warming and air-sea gas exchange were limited by the time of exposure to the atmosphere.

Figure 3: Gridded $pCO_2$ observations (symbols) vs. days since ice retreat (DSR) from 2012-2017, excluding 2015. Modeled $pCO_2$ (dashed curves, labeled with each year and with the color matching the $pCO_2$ symbol data) were computed from the predicted change in $pCO_2$ due to air-sea exchange and increase in SST using values in Table 1. Models were run to the maximum DSR recorded for each cruise period. Initial $pCO_2$ before loss of ice was assumed to be 300 µatm (see Methods). The cruise start dates are indicated in parentheses in the legend.

There are other possible sources of variability and incorrect model assumptions that could contribute to differences between the model and observations. The sensitivity analysis in the Supplemental Information (SI) shows that much (but not all) of the variability within each cruise can be explained by varying input values over the observed ranges (Figure 2S, Table 1).
some other notable deviations, however. For example, during 2016 and 2017, the two years with extended DSRs, the $p$CO$_2$ levels decreased after ~60 days (Figure 3). In these years, data were collected into October, at which point sea surface cooling is possible which would decrease the $p$CO$_2$. Because the model employs a linear warming trend, it can only predict the mean change not the time-varying rate of warming or cooling. We did not manipulate the rate of heating or introduce an arbitrary period of cooling because this would essentially be fitting to the data. However, the hypothesis that surface cooling drove the observed decreases in $p$CO$_2$ for these years is a plausible scenario. It is important to note that movement of the ship into different water masses over the course of each cruise may have also contributed to the scatter. For example, the drop in $p$CO$_2$ after 60 days in 2017 corresponds to a period of lower salinity (not shown). Also, employing DSR as a time variable in the model assumes that no air-sea exchange or warming occurred when sea ice concentration was greater than 15% which is clearly not true (Figure 1S). While we could not readily model gas exchange prior to DOR in this study, the heating contribution was likely small because no SST data exceeded 0.0 °C from 0 to 10 days after ice retreat. An increase of from -1.5°C, the approximate freezing point, to 0.0°C would increase $p$CO$_2$ by ~22 µatm. Steele and Dickinson (2016) also found that SST is typically < 0°C at DOR. Ice melt and formation could change $p$CO$_2$ by diluting and concentrating DIC, respectively, and by altering the ratio of DIC and A$_T$ in the ice or brine (Rysgaard et al., 2007, 2009; Cai et al., 2010; DeGrandpre et al., 2019). Ice melt occurs before DOR and could decrease $p$CO$_2$ levels (Cai et al., 2010). In fact, heating, gas exchange and ice melt may have all played a role in determining the pre-DOR $p$CO$_2$ levels, contributing to the deviations between model and observations evident in Figure 3.

Lastly, we consider possible biological contributions to the observed variability. Biological drawdown of sea surface $p$CO$_2$ in the Canada Basin is predicted to be small because of the lack of nutrients in the stratified surface layer. The study by Cai et al. (2010) found no evidence of a biological DIC drawdown in the Canada Basin for waters > 72°N. In a previous study in the Canada Basin, an NCP ~4.9 mmol O$_2$ m$^{-2}$d$^{-1}$ offset a ~15 µatm $p$CO$_2$ increase expected from atmospheric CO$_2$ uptake in low ice conditions (Islam et al., 2017). The Ji et al. (2019) NCP values, which ranged from 1.3 to 2.9 mmol O$_2$ m$^{-2}$d$^{-1}$ from 2011-2016, confirm the very low productivity for the Canada Basin (Bates et al. 2005). For comparison, in the same paper, NCP in the eastern
Chukchi Sea was estimated to range from 30 to 240 mmol m\(^{-2}\)d\(^{-1}\). The Canada Basin rates have a relatively small effect on the modeled \(p\text{CO}_2\) levels, estimated using Equation 3. In 2012, the \(p\text{CO}_2\) would be reduced by 8-25 µatm by the end of the DSR period (60 days) over the range of NCP reported in Ji et al. (2019) (Figure 2S). These estimates assume the rate of NCP was constant over the DSR period. The O\(_2\)/argon method integrates NCP over the residence time of O\(_2\) in the mixed layer (10-30 days) (Kaiser et al., 2005) and the rates in Ji et al. (2019) varied by only 15-21% during the cruises. This range of variability would not significantly alter the modeled \(p\text{CO}_2\) trajectory (Figure 2S, Table 1S).

4. Conclusions

This study reveals that loss of sea ice leads to increased sea surface \(p\text{CO}_2\) levels in the Canada Basin. Using the DSR as a temporal reference facilitated implementation of a time-dependent mass balance model to explore the underlying mechanisms that might control sea surface \(p\text{CO}_2\) in open water conditions. Results from the model suggest that warming and air-sea uptake drive the \(p\text{CO}_2\) towards atmospheric equilibrium to a varying extent (Figure 3 and Figure 3S). NCP is persistently low and can only account for a small portion of the observed interannual variability (Figure 2S, Table 1S). These results suggest that neither of two previously proposed scenarios, i.e. that increased SST will largely negate uptake of atmospheric CO\(_2\) (Else et al., 2013) or that air-sea gas exchange will consistently dominate the increase in \(p\text{CO}_2\) (Cai et al., 2010; Bates et al., 2006) (Figure 2S). An important implication, as discussed by others (Cai et al., 2010), is that increased SSTs can reduce the uptake of atmospheric CO\(_2\) by increasing the rate at which \(p\text{CO}_2\) rises towards atmospheric equilibrium, decreasing the air-sea CO\(_2\) gradient. The model prediction suggests that warming reduced the possible air-sea CO\(_2\) flux by 55% in 2012, the year with the most warming (Figure 3S). As Arctic warming and open water periods increase, it is possible that, as observed in 2012, the lowest ice concentration year on record, \(p\text{CO}_2\) will more frequently exceed atmospheric saturation. These results also imply that CO\(_2\) is accumulating from year to year in the Canada Basin. Even with the insights provided in this study, the future response of the AO carbon cycle to decreased seasonal ice cover remains highly uncertain and can only be understood by continued observations and modeling.
Acknowledgments

Cory Beatty (University of Montana) operated the underway $p$CO$_2$ system. Fakhrul Islam and Brittany Peterson (University of Montana) helped with data analysis. Sarah Zimmerman (Institute of Ocean Sciences) facilitated installation of the $p$CO$_2$ system and oversaw the seawater line measurements. The underway $p$CO$_2$ instrument (SUPER-CO$_2$) and technical support were provided by Sunburst Sensors. We thank Andrey Proshutinsky (WHOI) for his leadership as co-PI of the BGOS program. Additional vital logistical support was provided by WHOI personnel. The reviewers’ comments significantly improved the manuscript. The data are available through the U.S. National Science Foundation (NSF) Arctic Data Center (https://arcticdata.io) (doi:10.18739/A2R785P3X). This research was made possible by grants from the NSF Arctic Observing Network program (ARC-1107346, PLR-1302884, PLR-1504410 and OPP-1723308).

In addition, M.S. was supported by ONR grant 00014-17-1-2545, NASA grant NNX16AK43G, and NSF grants PLR-1503298 and OPP-1751363.

References


Hales, B., D. W. Chipman, and T. Takahashi (2004), High frequency measurement of partial
pressure and total concentration of carbon dioxide in seawater using microporous hydrophobic

Hunt, B. P. V., R. J. Nelson, B. Williams, F. A. McLaughlin, K. Young, K. A. Brown, S. Vagle,
and E. C. Carmack (2014), Zooplankton community structure and dynamics in the Arctic

Islam, F., M. DeGrandpre, C. Beatty, R. Krishfield, and J. Toole (2016), Gas exchange of CO₂
and O₂ in partially ice-covered regions of the Arctic Ocean investigated using in situ sensors,

Islam, F., DeGrandpre, M., Beatty, C., Timmermans, M.-L., Krishfield, R., Toole, J. and S.
Laney (2017), Sea surface pCO₂ and O₂ dynamics in the partially ice-covered Arctic Ocean, *J.

Ivanova, N. et al (2015), Inter-comparison and evaluation of sea ice algorithms: towards further
identification of challenges and optimal approach using passive microwave observations, *The
Cryosphere*, 9, 1797–1817.

Ji, B.Y., Sandwith, Z. O., Williams, W. J., Diaconescu, O., Ji, R., Li, Y., Van Scoy, E., Yama-
moto-Kawai, M., Zimmermann, S. and R. H. R. Stanley (2019), Variations in rates of biologi-
cal production in the Beaufort Gyre as the Arctic changes: Rates from 2011 to 2016, *J. Geo-

Jutterström, S. and L. G. Anderson (2010), Uptake of CO₂ by the Arctic Ocean in a changing

Kaiser, J., M. K. Reuer, B. Barnett, and M. L. Bender (2005), Marine productivity estimates
from continuous O₂/Ar ratio measurements by membrane inlet mass spectrometry, *Geophys.

Kelley Jr., J. J. (1970), Carbon dioxide in the surface waters of the North Atlantic and the Bar-


**Supplemental Information**

**Additional data:** All of the gridded $p$CO$_2$ and ice concentration data from the maps (Figure 1) are plotted together in Figure 1S. These data reveal an overall upward trend of $p$CO$_2$ with decreasing ice cover. Interannual differences are not clear, however. Consequently, each cruise data set was averaged to obtain Figure 2. The data after DOR, i.e. the Figure 1S data from 0-15% ice concentration, are the data that are plotted in Figure 3.

![Figure 1S: Gridded $p$CO$_2$ and ice concentration data for the area bracketed by 155-130° W, 72-82° N in the Canada Basin (Figure 1).](image)

**Mass balance model sensitivity:** Model sensitivity to different input variables is illustrated by comparisons with the 2012 model from Figure 3 using 2012 average conditions (black curves in Figure 2S). Model inputs were varied over the range expected based on the inter-annual differences and standard deviations in Table 1 (MLD, wind speed and temperature) and the range of NCP in Ji *et al.* (2019). Results were similar for other years. The 2012 gridded $p$CO$_2$ data are included as in Figure 3 to compare the full range of observed variability with the range predicted by the model. Each sensitivity run includes the contribution from heating so that sensitivity model curves and the 2012 model are directly comparable. These results show that much (but not all) of the
variability observed during 2012 can be explained by variability in model input values, discussed in more detail in the manuscript. Sensitivities are shown in Table 1S, calculated from the relative standard deviation of the $pCO_2$ divided by the relative standard deviation of the variable, i.e.,

$$S = \left[ \frac{sd\ pCO_2\ mean}{pCO_2\ mean} \right] / \left[ \frac{sd\ variable}{(variable\ mean)} \right]$$

Equation 1S

where $S$ is the sensitivity in %/%, “sd $pCO_2$ mean” is the average standard deviation of the model $pCO_2$ from the 2012 Figure 3 curve (i.e., the deviations of the colored curves from the black curve) and “sd variable” is the standard deviation of the variable over the ranges shown in the legends in Figure 2S. The sensitivities (Table 1S) are small values

Figure 2S: Sensitivity of the model (see Methods) to different input values for 2012 including wind speed (A) mixed layer depth (B), net community production (NCP)(C) and heating (D). Values were varied over the ranges shown in Table 1. NCP was varied over the range measured by Ji et al., (2019).
because the range of $pCO_2$ is large relative to the differences in $pCO_2$, in contrast to the variable (e.g. wind) relative standard deviations which are large (the denominator). The numbers can be compared, however, to provide insight into the potential importance of each variable. To facilitate this comparison, the sensitivities are normalized to the sensitivity due to heating (Table 1S). Results are most sensitive to wind speed, reflecting the non-linear (quadratic) relationship between wind speed and gas transfer velocity (Wanninkhof 2014).

Table 1S: Sensitivity analysis comparisons.

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>%/% relative to heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating</td>
<td>0.037 1.00</td>
</tr>
<tr>
<td>MLD</td>
<td>0.047 1.27</td>
</tr>
<tr>
<td>Wind speed</td>
<td>0.090 2.43</td>
</tr>
<tr>
<td>NCP</td>
<td>0.025 0.68</td>
</tr>
</tbody>
</table>

Figure 3S: Modeled air-sea CO$_2$ fluxes (left) and maximum modeled changes in sea surface $pCO_2$ (right) for open water. The right figure was derived directly from the model results in Figure 3 using the mean values in Table 2 (no NCP). In the left panel, NCP was set equal to 1.32 mmol m$^{-2}$ day$^{-1}$ (Ji et al., 2019) with and without the SST increase in Table 1.

**Effects on air-sea CO$_2$ fluxes and changes in pCO$_2$:** The model is also used to assess the influence of the SST increase and NCP on the air-sea CO$_2$ flux (Figure 3S, left panel). These calculations were determined from the model results shown in Figure 3 with SST
warming only or with SST warming and NCP. The fluxes are comparable to other open
water air-sea flux values reported for the AO (Bates et al., 2011; Evans et al., 2015).
Both SST and NCP can change the net flux of CO2 by increasing and decreasing the rate
of increase of pCO2, respectively. Fluxes are lowest (within years) when SST is included
in the model due to the more rapid increase in pCO2 towards atmospheric equilibrium.
The net air-sea CO2 flux is lowest in 2012 because the pCO2 exceeded atmospheric levels
and became a source of CO2 for a short period (Figure 3). For this reason, the increase in
SST had the strongest influence in 2012, decreasing the air-sea CO2 flux by 55%
compared to 13-28% during the other years. The model shows that the mean NCP
reported in Ji et al. (2019) (1.32 mmol m⁻² d⁻¹) slows the increase in pCO2, and
consequently, increases the flux by 45% in 2012 and from 5-35% during the other years
(Figure 3S, left panel). The predicted change in pCO2 was computed to further illustrate
the influence of SST increase on sea surface pCO2 (Figure 3S, right panel). These results
suggest that the relative contributions from the increase in temperature and air-sea gas
exchange vary significantly from year to year. For example, contrast the changes in pCO2
for the larger increase in temperature and shorter maximum DSR in 2012 with the small
increase in temperature and long DSR in 2016 (Table 1, Figure 3). Consequently, these
results suggest that under current conditions the Canada Basin sink for atmospheric CO2
will have large inter-annual variability.